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Abstract—Most cloud computing optimizers explore and im-
prove one workload at a time. When optimizing many workloads,
the single-optimizer approach can be prohibitively expensive.
Accordingly, we examine “collective optimizer” that concurrently
explore and improve a set of workloads significantly reducing the
measurement costs. Our large-scale empirical study shows that
there is often a single cloud configuration which is surprisingly
near-optimal for most workloads. Consequently, we create a
collective-optimizer, MICKY, that reformulates the task of finding
the near-optimal cloud configuration as a multi-armed bandit
problem. MICKY efficiently balances exploration (of new cloud
configurations) and exploitation (of known good cloud config-
uration). Our experiments show that MICKY can achieve on
average 8.6 times reduction in measurement cost as compared to
the state-of-the-art method while finding near-optimal solutions.

Hence we propose MICKY as the basis of a practical collective
optimization method for finding good cloud configurations (based
on various constraints such as budget and tolerance to near-
optimal configurations).

I. INTRODUCTION

Cloud computing optimizer is a device to select the best
cloud configurations (such as virtual machine (VM) types and
the number of VMs) for a given workload. Choosing the
right cloud configuration is essential to maximize applica-
tion performance and minimize operational costs. However,
such optimization task is not straightforward due to opaque
resource requirement [1], [2]. To address this challenge, prior
work either builds prediction models (as in Ernest [3] and
PARIS [1]) or uses sequential model-based optimization (as in
CherryPick [4], Arrow [5] and Scout [6]).

While they are effective, they are only designed for a
single workload. In practice, it is rare to migrate only one
workload [7], [8]. Since these optimizers are expensive to run,
applying them independently to workloads requires significant
measurement cost and long optimization process. In this paper,
we optimize a batch of workloads altogether.

This kind of collective optimization is impossible if work-
loads execute very differently on different cloud configura-
tions. Prior work reports there does not exist an one-size-
fits-all VM type that is best for all workloads [4], [1], [5].
However, while analyzing the data from our large empirical
study involving three different software systems and over 100

*These two authors contribute equally to the work.

workloads, we noticed that there does exist at least a cloud
configuration (e.g., m4.large), which performs satisfactorily
for the majority of workloads. If the above is prevalent in
cloud computing, it should be possible to simplify collective
optimization. In this paper, we exploit this phenomenon in
order to further reduce optimization cost.

We call such a cloud configuration Exemplar Configuration,
which is near-optimal or satisfactory for the majority of
workloads. In our empirical study, the exemplar configuration
is only 5-20% slower or more expensive than the optimal
choice. In any cloud optimizer, there exists a trade-off between
search performance (how far a choice is from the optimal) and
measurement cost (how many tests an optimizer requires to
find a suitable configuration). With the exemplar configuration,
we can trade a slight decrease in search performance for a
large reduction in measurement cost because redundant efforts
can be reduced in collective optimization. When optimizing a
group of workloads, such trade-off not only brings significant
cost reduction but also shortens the optimization process
as well as the migration procedure. However, finding such
an exemplar configuration is not straightforward because it
depends on workloads and performance objectives. Moreover,
as cloud providers expand their cloud portfolio, the exemplar
configuration is also likely to change. In this paper, we focus
on finding out this exemplar configuration efficiently.

To this end, we propose and evaluate a collective optimiza-
tion method, MICKY1, which enables users to deploy a group
(not one) of workloads to the cloud more efficiently (lower
measurement cost). We reformulate “finding the exemplar con-
figuration” as the multi-armed bandit problem [9], [10], [11],
[12], [13]. The two problems are similar because the bandit
problem aims to maximize rewards (MICKY, for example,
minimizes execution time or operational cost) in a series of
decisions (to run a workload on a cloud configuration), each is
associated with an unknown payoff and a known opportunity
loss (whether the decision meets the performance objective).
Our evaluation shows that MICKY can find the exemplar
configuration using only 12% of the total effort compared
to a sophisticated single-optimizer. This cooperative style of
search methods ensures that users do not need to optimize

1Micky (Rosa) is a character, from the Hollywood movie 21, who founded
the MIT Black Jack team of card counters.
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each workload separately; instead, finds the exemplar cloud
configuration collectively, thereby reducing measurement cost.

MICKY finds a configuration that is near-optimal for the
majority of workloads. But the chosen configuration could per-
form unacceptably for some workloads. To remedy this issue,
we integrate our previously built system SCOUT to identify
sub-optimal cases [6]. This enables elaborate optimization for
unsatisfactory workloads if strict performance is required.

We demonstrate the effectiveness of MICKY by evaluating
it on 107 real-world workloads (using three popular software
systems) and show that MICKY can find near-optimal cloud
configurations by using only a fraction (12%) of the mea-
surement cost used by the state of the art methods, at the
expense of less optimal choices. There is always a trade-off
between search performance and measurement cost. Based on
our evaluation, we advise users not to use MICKY only when
the same workloads will repeat more than tens of runs (i.e.,
30 times using our analysis) . To deploy a batch of workloads
to cloud, we believe MICKY is more desirable than state-
of-the-art methods because the higher number of recurrence
would certainly limit the applicability of cloud optimization.
Furthermore, those sub-optimal choices can be eliminated
through the integration between MICKY and SCOUT, thereby
creating a more robust solution.

The main contributions of this paper are:

• Using a large-scale empirical study, we discover the
exemplar cloud configuration (Section III-A).

• We propose to formulate “finding the exemplar configu-
ration in the cloud” as the multi-armed bandit problem
(Section III-C).

• Using real-world data collected from EC2, we show
MICKY can quickly find the exemplar configuration (Sec-
tion IV).

• We show the system integration between MICKY and
SCOUT is able to achieve low optimization cost and high
performance guarantee (Section V).

• We design a practical guide for selecting the right cloud
computing optimizer (Section VII).

II. WHY COLLECTIVE OPTIMIZATION

A cloud optimizer is often evaluated with search perfor-
mance and measurement cost.

Search performance is the measure of the quality of the
found solutions by an optimizer. For example, in searching for
the most cost-effective configuration, an optimizer that finds
a configuration that is only 10% more expensive than the
optimal is considered better than another optimizer that can
only find a configuration that is 30% slower. In this paper, we
use normalized performance (to the optimal) for evaluation.

Measurement cost is the total cost of running an optimizer.
An optimization process is expensive because it requires to test
a workload on some cloud configurations for deriving the best
choice. We use the number of tests as the measurement cost
because it is an intuitive measure. The amount of charge is
another measure [4].

There is always a trade-off between measurement cost and
search performance. The primary motivation for collective
optimization is to reduce high measurement cost of optimizing
multiple workloads. If users demand strict search performance,
they better turn to single-optimizers. However, we argue that
collective optimization is promising because it achieves com-
parable or slightly worse search performance while reducing
measurement cost significantly. In the following, we discuss
the benefits of having a collective optimizer.

Large scale cloud migration. Cloud computing is a cost-
effective solution. Enterprises are moving in-house applica-
tions to the cloud, and need a quick way for large migra-
tion [7], [8]. Elaborate optimizers are expensive (in measure-
ment cost) and time-consuming (in optimization process).

Limited budgets. The single-optimizer such as CherryPick
and Scout are effective and desirable for highly recurring
workloads because the measurement cost can be amortized.
However, the number of budgets to run optimizers does not
increase linearly with the number of workloads. To better
support multiple workloads, we need to reduce measurement
cost while delivering comparable search performance.

Expanding cloud portfolio. Cloud providers expand their
cloud portfolio more than 20 times in a year [14]. Therefore,
users have to rerun optimizers to update their configurations
for all workloads. Again, this is an expensive and time-
consuming process.

Seed cloud optimizers. All the cloud optimizers require
initial measurements. It is unclear how to determine the best
starting points. In this paper, we aim to find the exemplar con-
figurations, which can be used as the starting points, thereby
reducing measurement cost. The exemplar configuration can
be used to seed singe-optimizers such as CherryPick and
SCOUT, which will be discussed more in Section V.

In summary, users would prefer collective optimization if
search performance is comparable to single-optimizers while
measurement cost can be reduced greatly.

III. FINDING THE EXEMPLAR CLOUD CONFIGURATION

In this section, we first present our empirical study on inves-
tigating the potential of finding the exemplar cloud configu-
ration. We then formulate “finding the exemplar configuration
in the cloud” as the multi-armed bandit problem. Finally, we
discuss the heuristics to derive the exemplar configuration.

A. Empirical Study

We choose three popular software systems for cloud ap-
plications, namely Apache Hadoop 2.7, Spark 2.1 and Spark
1.5. This study includes 30 applications for diversification.
They are data processing, OLAP queries, common statistics
functions, and popular machine learning algorithms. Although
they do not cover all the spectrum of real-world applications,
they are representative of many nowadays cloud applications.
When the input to applications changes, the workload behavior
changes accordingly [3], [15]. We also choose three different
input parameters and data sizes for each application. In total,
our evaluation includes 107 workloads.
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(a) Hadoop 2.7
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(b) Spark 2.1
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(c) Spark 1.5

Fig. 1. Opportunity to find the exemplar VM instances across workloads for reducing operational cost. The y-axis represents the percentage of workloads
(out of 107 in three systems) that are within 30% difference with the optimal performance. The colored bars are VM types that considered the exemplar
configurations for the majority of workloads (>= 50%). The red bar represents that the VM type is more likely to be the optimal choice.

We conduct our evaluation on AWS EC2 [16]. Regarding the
VM to run the workloads, we choose 18 different VM types.
They include three instance families: 1) compute-optimized
instances (c3 and c4), 2) memory-optimized instances (r3 and
r4), and 3) general-purpose instances (m3 and m4). For each
instance family, we choose large, xlarge and 2xlarge for the
instance size. Although we only evaluate 21% VM types (AWS
supports 85 kinds as of January in 2018), they reflect many
use cases on AWS EC2. Besides, some VM types are designed
for acceleration using GPU and FPGA, and therefore, they
are less common and not included. Furthermore, it is reported
that VM types with lower than 8 cores dominate VM useage
on Azure [17]. We try our best to reflect the common cloud
deployment. More details regrading data collection can be
found in our previous work [5], [6]. We also made our data
public available for further research [18].

B. The Exemplar Configurations

The exemplar configurations are configurations that are
near-optimal or satisfactory in the majority of workloads.
When the percentage is large, we can exploit the exemplar
configurations to simplify collective optimization. In Figure 1,
we present the opportunity of exploiting such configurations.
We count the number of the normalized performance that is
within 30% of the optimal. The colored bars are possible
exemplars because they are satisfactory at least in half of the
workloads. The red bar represents the VM type that is more
likely to be the optimal than other configurations. This figures
show there exist several exemplar configurations.

In Table I, we give snippets of measurement data to better
illustrate the exemplar configurations. This table presents the
normalized performance of workloads on some of the VM
types. A 1.0 number indicates the VM type is the optimal
choice for the corresponding workload while a larger number
implies a sub-optimal choice. We can observe that c4.large
is the optimal configuration for 18 workloads (out of 35).
However, it is also a sub-optimal VM type (> 1.4) in 11
workloads, which generating 1.72 normalized performance on
average. On the other hand, m4.large seems to be a better
choice because it delivers 1.45 performance on average and
creates only 5 sub-optimal workloads. The above gives one
way to select the exemplar configuration and in the following,
we describe the challenges of selecting the exemplar.

Varying workloads. In Table I, we show five possible
exemplar configurations for those particular workloads. The
exemplars very in different sets of workloads. For example,
c4.large is the best choice in Hadoop 2.7 while m4.large
should be selected as the exemplar VM type in Spark 2.2.

Expanding cloud portfolio. As mentioned before, cloud
providers introduce new VM types regularly, which includes
performance boost and price adjustment. The exemplar con-
figurations might also change accordingly.

Online discovery. We present an offline analysis of mea-
surement data above. However, finding the exemplar config-
uration is an online task (for unknown workloads), which is
considered a difficult learning problem. This is similar to the
exploration-exploitation dilemma [19].

From the above, it would appear that there exist exem-
plar configurations in real-world workloads. Note that if the
exemplar configuration is prevalent, it should be possible
to simplify collective optimization as follows: finding the
exemplar configuration instead of finding the optimal choice
for each of the workload. The exemplar configurations deliver
near-optimal to satisfactory performance in the majority of
workloads. The rest of this paper is a test of that speculation.

C. Problem Formulation

MICKY attempts to find the exemplar VM type (vm∗ ∈
VM ) for a group of workloads (W ). The workload refers
to a combination of an application and the data used. The
performance is measured in terms of execution time and
operational cost. The cloud configuration space for workload
w is referred to as (s ∈ Sw), where Sw is the set of cloud
configuration options for a workload w. The size of the search
space is Nw cloud configurations. In our setting, the size of
the cloud configuration space is same for all workloads. For a
given workload w, each configuration s has a corresponding
performance measure yw,s = φ(w, s).

Single-optimizers such as Cherrypick [4] searches a suitable
VM type for every workload w separately. The search starts
with a pool of unevaluated configuration (Uw)—the specific
workload has not been run on any configuration. As the
search proceeds, the cloud configuration are selected from
Uw and moved to the evaluated pool (Ew). The sum of the
cardinalities of Uw and Ew is equal to the cardinality of Sw

(|Uw| + |Ew| = |Sw|). The measurement cost of the search



TABLE I
NORMALIZED PERFORMANCE ON A SELECTED GROUP OF VM TYPES

AND WORKLOADS. THE NUMBER 1.0 REPRESENTS THE OPTIMAL CHOICE
ACROSS THE 18 VM TYPES FOR THE PARTICULAR WORKLOAD.

System Workload c3.large c4.large c4.xlarge m4.large m4.xlarge

H
ad

oo
p

2.
7

aggregation 1.26 1.00 1.12 1.12 1.29
join 1.26 1.00 1.09 1.17 1.26
scan 1.16 1.00 1.70 1.15 1.89
sort 1.10 1.00 1.06 1.03 1.11
terasort 1.31 1.00 1.16 1.07 1.12
pagerank 1.24 1.03 1.16 1.05 1.00

Sp
ar

k
2.

2

join 1.12 1.00 1.40 1.12 1.23
scan 1.13 1.00 1.48 1.03 1.59
sort 1.11 1.00 1.42 1.13 1.40
terasort 1.30 1.19 1.66 1.34 1.46
wordcount 1.83 1.64 1.23 1.00 1.08
als 1.00 1.67 3.19 1.46 2.72
aggregation 1.30 2.00 1.08 1.00 1.18
pagerank 2.33 2.12 1.00 1.31 2.10
bayes 3.15 3.57 1.00 1.60 1.61
lr 6.50 5.56 1.44 1.00 2.61

Sp
ar

k
1.

5

chi-feature 1.19 1.00 1.32 1.29 1.53
fp-growth 1.27 1.00 1.37 1.20 1.46
gmm 1.19 1.00 1.27 1.25 1.36
gb-tree 1.19 1.00 1.63 1.17 1.94
pca 1.16 1.00 1.11 1.15 1.31
pearson 1.19 1.00 1.11 1.19 1.11
word2vec 1.22 1.00 1.06 1.15 1.24
spearman 1.21 1.00 1.12 1.06 1.02
statistics 1.15 1.00 1.43 1.08 1.56
svd 1.16 1.00 1.02 1.07 1.09
chi-gof 1.24 1.12 1.46 1.00 1.81
bayes 1.27 1.15 1.19 1.25 1.35
lda 1.66 1.36 1.10 1.00 1.31
pic 1.53 1.39 1.00 1.15 1.31
d-tree 1.70 1.70 1.23 1.00 1.48
als 2.23 1.86 2.89 1.00 1.27
regression 4.03 3.60 4.06 4.42 4.70
classification 6.11 5.41 5.70 6.07 1.00
kmeans 6.22 5.74 3.66 3.73 1.00

# of optimal 1 18 3 7 3
Mean 1.89 1.72 1.63 1.45 1.53
25% 1.18 1.00 1.11 1.04 1.15

Median 1.26 1.00 1.23 1.15 1.31
75% 1.68 1.69 1.47 1.25 1.58

process is Cw = |Ew|. When optimizing a group of workloads,
single-optimizers generate a total cost C =

∑
w∈W |Cw|.

MICKY is a collective optimization method. We explore the
exemplar VM type vm∗ so that |Ew1

∪ Ew2
∪ · · · ∪ Ewn

|
is minimized while the corresponding performance measure
yw,vm∗ is comparable to the the ones in single-optimizers.

D. The Multi-Armed Bandit Problem

To realize collective optimization, we reformulate the prob-
lem of configuration optimization as a multi-armed bandit
problem [20], [9], [10], [11]. In the problem setting, an agent
(gambler) sequentially searches for a slot machine (from a
group of slot machines) to maximize the total reward collected
in the long run. This problem is non-trivial since the agent
(gambler) cannot access the true probability of winning—all

learning is carried out via the means of trial-and-error and
value estimation. To find the suitable slot machine, the agent
needs to acquire information about arms (exploration) while
simultaneously optimizing immediate rewards (exploitation).
The is referred to as the exploration-exploitation dilemma [19].
Finding the better VM type for workloads naturally fits into
the multi-armed bandit problem. We describe their similarities
in the following.

Slot Machine. Each VM type is similar to a slot machine.
Our objective is to find the best VM that maximizes the reward
for a group of workloads.

Arm. Arms are the choices of slot machines. In the cloud
setting, an optimizer chooses a VM type to run a workload.

Pull. A pull is one play on the slot machine. It takes coins
(cost) and yields a reward. Similarly, an optimizer picks a
VM type and measures the performance of a workload on the
selected VM.

Reward. Reward refers to the amount of money a gambler
wins or loses from pulling the arms. In our setting, the reward
is determined by where it meets a performance objective. We
use performance delta (between the selected and the optimal
choice) for calculating the reward. Please note that the optimal
configuration is not known in the real-world setting.

Budget. A gambler owns a certain amount to spend on
the slot machines. In our setting, an optimizer requires to
complete the optimization process in a limited budget. We use
the number of measurements as the budget (C). In practice,
the minimal budget is usually |VM | and the maximum budget
is |VM | × |W |. The budget is determined by users. A higher
budget yields a better reward.

Objective. The objective of MICKY is to find the best
configuration (minimize performance delta) for multiple work-
loads with fewer measurements.

The multi-armed bandit problems have attracted attention
for solving online learning problems. For example, Dambre-
ville et al. [12] used multi-arm bandit to minimize the energy
consumption of a cloud platform by using workload prediction
to reallocate the set of available servers. Jiang et al. perform
data-driven QoE (quality of experience) optimization for real-
time exploration and exploitation [13]. While we borrow
techniques from this rich literature [10], our contribution is to
shed light on how to use these techniques to find the exemplar
cloud configurations and to show collective optimization can
solve the problem using only a fraction of measurement cost
required by prior work.

E. Heuristics

In the literature, several strategies have been proposed to
find the most rewarding slot machines (the exemplar con-
figurations) in the multi-arm bandit setting. These strategies
can be divided into three major groups. First, the Epsilon-
greedy, works by oscillating between (a) exploiting the best
option which is currently known, and (b) exploring at random
among all of the options available to it. Second, the probability
matching strategy selects the arms according to the probability
of the arm being the optimal choice. Thompson sampling
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Fig. 2. Search performance of optimization methods in search for cost-effective cloud configurations. Three software systems are
evaluated. CherryPick finds good solutions in the three systems while MICKY is comparable in Hadoop 2.7 but shows higher variance
(sub-optimal choices). We propose a integrated system (in Figure 5) to detect those sub-optimal cases for improving MICKY.

or Bayesian Bandits are well-known probability matching
strategies. Last, in the contextual bandit problem, strategies
such as Upper Confidence Bound (UCB) builds a predictor
from existing observation for making a better decision. UCB
always opportunistically chooses the arm that has the highest
upper confidence bound of reward, and therefore, it will
naturally tend to use arms with high expected rewards or high
uncertainty. The above only discusses some important meth-
ods. It is not the major focus to design the best method but to
evaluate the existing methods best for collective optimization.

IV. EVALUATION
A. Comparison Method

We compare our method with Brute Force—measures all
possible configurations and CherryPick—the state-of-the-art
method [4]. Please refer to the related work (Section VI) for
more details. Besides, we use Random-4 and Random-8, which
randomly measures 4 and 8 configurations (for each workload)
respectively as straw man methods. The comparison metrics
are measurement cost and search performance.

The brute force approach needs to test each configura-
tion, and therefore, it generates constant measurement cost
(|Sw| × |W |). The measurement cost of CherryPick varies for
different workloads since it uses a heuristic stopping criterion.
The lower bound is 3 × |W | because CherryPick uses at
least three measurements as its initial points. MICKY performs
collective optimization, and hence the measurement cost is
shared by a batch of workloads and therefore, expected to be
much lower than the other methods.

To compare their search performance, we use normalized
performance in terms of execution time (the elapsed time
required to complete a workload) and operational cost (the
charge for completing a workload). The brute force approach
always finds the optimal configuration while the CherryPick is
very likely to find near-optimal choices. We examine whether
MICKY can find near-optimal configurations that are compa-
rable to the CherryPick approach. A method delivers better
search performance when the performance of found solutions
is closer to the optimal. For example, 1.05 is better than 1.15
because the former is only 5% slower than the optimal.

We demonstrate the effectiveness of MICKY using 107
workloads on Apache Hadoop and Spark. These workloads are
representative of many real-world applications. Table I lists a
subset of the workloads. Please refer to our previous work for
more details [5], [6], [18].

B. Experiment Setup

CherryPick—Bayesian Optimization: We encode the
cloud configurations (i.e., CPU types, core counts, memory
size per code and the bandwidth to Elastic Block Storage) to
represent the search space. For the parameters, we choose the
same kernel function (Matérn 5/2) and the same stopping crite-
ria (EI=10%), as used in CherryPick. Regarding the choice of
initial points, we randomly select three cloud configurations.
The above process is repeated 100 times for reducing artifact
and better showing the capability of CherryPick.

MICKY—Multi-Armed Bandit: There are three common
algorithms for the multi-armed bandit problems as described
in Section III. We choose UCB because it is more stable
as compared to other bandit algorithms (will be discussed
later in Section IV-E). MICKY runs in two phases: (1) pure
exploration, and (2) exploration along with exploitation. In
the pure exploration phase, MICKY measures the performance
of VMs with random workloads for improving stability and
reduces sampling bias. The α parameter represents the number
of exhaustive iterations over each VM type. In the second
phase, MICKY runs the algorithm to handle the exploration and
the exploitation. The behavior of this phase is controlled by
the parameter β, which controls the number of measurements
for finding the exemplar configurations. The measurement cost
of MICKY is (α× |S |+β× |W |). We have observed that the
measurement cost is directly proportional to the effectiveness
of MICKY. In our experiments, we choose α = 1 and β = 0.5.

C. Can Micky identify the exemplar cloud configurations?

The primary goal of MICKY is to find the most suitable
cloud configuration across all workloads. In this evaluation,
we show the search performance in finding the cost-effective
VM types. In Figure 2, we use box plot for comparison. The
red line in the box represents the median value while the two
sides of the box are the first and third quartile. The whiskers
represent the 10 and 90 percentile respectively.

From this figure, we observe that the performance of
MICKY is comparable to CherryPick in the majority of
workloads (using the median). MICKY is only 5% worse
than CherryPick on Spark 2.1 and Spark 1.5. Surprisingly,
MICKY is slightly better than CherryPick on Hadoop 2.7. The
variance of MICKY is higher because MICKY optimizes most
workloads but fails to optimize for some. We will discuss how
to remedy this situation in Section V.



TABLE II
THE MOST COST-EFFECTIVE VM TYPES FOR 107 WORKLOADS

RECOMMENDED BY MICKY THE NUMBER ABOVE EACH COLUMN LABEL
REPRESENTS NORMALIZED PERFORMANCE (TO THE OPTIMAL).

CHERRYPICK FINDS GOOD (< 1.2) VM TYPES IN 86% OF WORKLOADS.

= 1.0
Optimal

< 1.1
Excellent

< 1.2
Good

≤ 1.4
Tradeoff

> 1.4
Unsettled

c4.large 48% 61% 66% 70% 30%
m4.large 27% 46% 71% 84% 16%
m4.xlarge 9% 15% 32% 63% 37%
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Fig. 3. Low measurement cost in collective optimization. CherryPick
optimizes each workload separately while MICKY finds the exemplar cloud
configuration suitable for a group of workloads.

To explain why MICKY works, we further analyze the
exemplar VM types recommended by MICKY as listed in
Table II. The table shows the percentage of workloads that are
within the performance thresholds. CherryPick finds good VM
types (< 1.2) in 86% of workloads while MICKY achieves the
same search performance performance in 71% of workloads
using only 11.6% of measurements by CherryPick.

D. When not to use MICKY?

MICKY reduces measurement cost while delivering satisfac-
tory performance. However, there exists a trade-off between
the cost reduction achieved by MICKY and its effectiveness.

First, Figure 3 shows that CherryPick is four times ex-
pensive than MICKY. As the number of workloads increases,
MICKY is more economical because the cost of pure explo-
ration phase of MICKY remains constant. This is because
α depends only on the number of cloud configurations. We
observe that MICKY only uses a fraction of the measurement
cost when compared to the other methods. For example,
when optimizing for 40 workloads, MICKY only uses 30
measurements to find the suitable cloud configuration whereas
CherryPick uses 156 measurements. Another observation is
that MICKY is more scalable because the slope of the line
decreases as the number of workloads increases.

Second, a user demands near-optimal solutions (e.g., < 1.1)
mostly for highly recurring workloads because its measure-
ment cost can be amortized. In Table III, we show the knee-
point that a user should use a single-optimizer rather thatn
a collective-optimizer. We calculate the knee point using
K × f(∆P , CP ) ≥ g(∆M , CM ), where K is the recurrence
of a workload as the knee point, the function f represents
the opportunity loss due to inferior search performance, and
the function g represents the reduction of measurement cost
when using collective optimization. In addition, ∆P is the

TABLE III
THE KNEE POINT WHEN MICKY SHOULD NOT BE USED. THE KNEE

POINT (THE NUMBER OF RECURRENCE OF WORKLOADS) REPRESENTS A
TRADE-OFF BETWEEN SEARCH PERFORMANCE AND MEASUREMENT COST.

18 36 54 72 107

Brute Force 84.8 120.6 55.0 52.1 57.3
Random-8 37.9 51.5 33.7 36.0 44.7
Random-4 18.4 24.2 27.0 28.5 27.9
CherryPick 23.3 30.8 20.8 24.0 27.0

1.0 1.2 1.4 1.6 1.8
Search performance (normalized)

UCB (S0)

UCB (S1)

UCB (S2)

Epsilon Greedy (S0)

Epsilon Greedy (S1)

Epsilon Greedy (S2)

Softmax (S0)

Softmax (S1)

Softmax (S2)

Fig. 4. Selection of multi-armed bandit algorithms. The parameter (in the
parenthesis) controls the measurement budget (S0 < S1 < S2).

delta of normalized search performance (between a single-
and collective-optimizer), ∆M is the delta of measurement
cost. CP and CM are cost (e.g., dollars) defined by users.
For simplification, we use CP = 10×CM in this calculation..
For non-critical workloads (e.g., recurring batch-process jobs),
CP is lower, and hence, MICKY is more beneficial. As shown
in Table III, CherryPick is preferred only when the same
workloads run more than 20 to 30 times. Otherwise, MICKY
is a more desirable solution.

E. Why UCB is the preferred choice?

To select the suitable method for MICKY, we compare three
multi-armed bandit algorithms (as mentioned in Section III-E).
First, the behavior of Epsilon Greedy is controlled by the
parameter ε. A larger value encourages exploration while
a lower value encourages exploitation. We choose 0.1 for
the epsilon parameter. Second, the Softmax algorithm uses a
temperature parameter for structured exploration. The Softmax
algorithm with an infinity temperature uses pure exploration
while a zero value sticks to the arm (cloud configuration) with
the highest estimated probability—pure exploitation. We use
0.1 for the temperature parameter. Last, the Upper Confidence
Bound algorithm (UCB) tracks the confidence of rewards of
arms. There are no parameters.

Figure 4 presents the comparison between the three meth-
ods. The parameter in the parenthesis represents the mea-
surement budget, determined by α and β (as described in
Section IV-B). We choose 0, 1, 2 as the α parameter for
S0, S1, S2 and use 0.5 for β in all. This figure shows UCB
is more stable. Besides, the performance of UCB does not
heavily rely on parameter tuning. Therefore, we prefer UCB
to Epsilon Greedy, and MICKY is built using UCB.
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Fig. 5. A system integration to alleviate sub-optimal choices in some
workloads. SCOUT answers “is there a better configuration than the current
choice?” [6]. An integration of MICKY and SCOUT delivers a more efficient
and reliable recommendation system of cloud configurations.

V. TO ELIMINATE SUB-OPTIMAL CHOICES

While the exemplar configuration is adequate for most
workloads and reduces measurement cost significantly, it is
almost inevitably that fewer workloads may suffer from sub-
optimal performance (since we trade-off near-optimal per-
formance for a large reduction in measurement cost). For
instance, 30% workloads (c4.large) underperform (> 1.4) as
shown in Table II. Similarly, the 90 percentile in Figure 2.
Although we have shown MICKY is much more practical in
the knee point analysis (Section IV-D), it would be great if
we can inform users of those sub-optimal choices.

We propose a two-level approach that integrates our previ-
ously built system, SCOUT, to detect this problem for further
optimization [6]. SCOUT is able to answer “is there a better
configuration than the current choice?”. Figure 5 illustrates the
proposed system integration. Users get choices of optimizing
those under-performed workloads. Figure 6 indicates that those
sub-optimal choices are very likely to be identified. The
detection module can detect bad performance with a median
accuracy of 98%. This is promising because users benefit from
low measurement cost (by MICKY) and performance guarantee
(by SCOUT). This ability enables users to further optimize for
those sub-optimal workloads, which is particularly beneficial
to highly recurring workloads.

VI. RELATED WORK

The cloud computing optimizer determines the best cloud
configuration (such as VM types and cluster sizes) for a given
workload. Users are looking for configurations that are highly
performing (e.g., the shortest execution time) or cost-effective
(e.g., the cheapest operational cost), or meeting the trade-off
between them [4], [1], [5]. A poor choice, for example, can
lead to a 20 time slowdown or a 10 times increase in total
cost [5]. Although cloud providers recommend the choice of
VM types, it is too coarse grain to be effective [16], [21].
Besides, resource requirement for meeting a certain objective
is opaque [1]. Previous attempts are listed as follows.

Ernest exploits the internal structure of the workload to
predict execution time of a workload [3]. This significantly
reduces measurement cost. However, Ernest is not scalable
because the prediction model is specific to a VM type.

PARIS uses historical data to build a learning model for
predicting performance and cost of workloads on different VM
types [1]. Building an accurate model requires comprehensive
training data to cover diverse workload characteristics. Be-
sides, it may suffer from high prediction error (as high as
50%) in batch-processing workloads [1].
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Fig. 6. Detection of mis-predictions using SCOUT. The percentage repre-
sents the truth positive ratio, the probability the unsettled configurations can
be identified. The two optimization objectives are to find the fast configuration
and the most cost-effective VM type respectively.

CherryPick uses Bayesian Optimization, which updates its
beliefs (workload performance on configurations) and finds
the best configuration sequentially [4]. Although Bayesian
Optimization is powerful, it can be fragile when the search
space is not well represented [5].

Arrow leverages low-level performance metrics to address
the fragility issue in CherryPick due to insufficient repre-
sentation in the search space and poor choices of the kernel
function in Gaussian Process [5].

Scout uses historical data and leverages low-level perfor-
mance metrics [6]. This approach improves model accuracy,
solves the cold-start issue and alleviates the fragility issue.

In the literature, software configuration optimization [22],
[23], [24], [15], program parameter tuning [25], [26] and
sampling techniques [27], [28], [29] are active research di-
rections. They all focus on the same machine configuration.
It is not clear how to apply their approach directly to cloud
environments, where workloads perform very differently on
distinct cloud configurations, e.g., VM types.

VII. A PRACTICAL GUIDE TO CLOUD OPTIMIZER

To pick an optimizer, we should compare its search perfor-
mance and measurement cost, and understand their assump-
tions and constraints. In Figure 7, we derive a practical guide
for selecting an optimizer. This guide is derived based on
extended literature review and our extensive experimentation.

Performance delta (Perf ∆) represents search perfor-
mance, the lower, the better. Some cloud optimizers may suffer
from the fragility issue or high prediction error. They are
considered less reliable. When using these optimizers, users
should be more careful because they do not know whether
the recommended configurations by the optimizers are near-
optimal or sub-optimal.

Low-level Metrics (LLM) are runtime information (such
as CPU utilization, memory usage, and I/O rates) for better
characterizing workloads. If such low-level information is
accessible, users should choose optimizers that leverage low-
level performance information.

Historical data (History) is execution records of workloads
on cloud configurations. CherryPick and Arrow do not use
historical data (from other workloads) and therefore, require
significant initial measurements for building prediction models
while PARIS and Scout uses historical data.
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Fig. 7. A practical guide to choosing the right optimization method. CheeryPick works for any workloads without historical and low-level performance
data [4]. Arrow uses low-level metrics to augment Bayesian Optimization (used in CherryPick) [5]. PARIS requires low-level and historical data for predicting
execution time and running cost of workloads on different VM types [1]. SCOUT leverages a learning model and sequential model-based optimization (SMBO)
to deliver efficient, effective and reliable recommendation [6]. Micky, different from others, applies collective optimization to largely reduce measurement cost.

Budget is the measurement cost a user is willing to pay
for an optimizer. While the brute force approach delivers the
best search performance, it is too expensive in practice. Using
the state-of-the-art methods, for example, CherryPick incurs
measurement cost of about 22% to 33% of the configuration
space, and Scout reduces the cost down to 11% to 19% while
achieving similar or better search performance [6].

Figure 7 summarizes the contribution of this paper. MICKY
reduces measurement cost while delivering comparable search
performance for a group of workloads. To address the sub-
optimal choices in some workloads, we propose an integration
with SCOUT for further optimization.

VIII. CONCLUSION

Collective optimization is promising and yet practical for
deploying multiple workloads in clouds. The collective opti-
mization problem is similar to the multi-armed bandit problem.
With existing heuristics, we are able to derive the exemplar
cloud configuration that works well across a group of work-
loads. Collective optimization greatly reduces measurement
cost while producing optimal to satisfactory performance.
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