MAT 302 Mid-term Checklist

- Do you know:

1. [Groups]: Groups \mathbb{Z}_{N} and \mathbb{Z}_{N}^{*}, and how to compute the Euler Totient Function $\phi(N)$, given the factorization of N ?
2. [Algorithms]:

- Euclid and Extended Euclid, application to computing inverses in \mathbb{Z}_{N}.
- Exponentiation: how to compute $b^{a}(\bmod N)$ given b, a and N ? The "square and multiply" algorithm for exponentiation.
- Finding Roots: how to find b such that $b^{a}=c(\bmod N)$ given a, c and N ? How to find roots for prime and composite N.
- Discrete Log: how to find a such that $b^{a}=c(\bmod N)$ given b, c and N ? The baby step giant step algorithm and its complexity.
- Primality Testing: The Fermat test, Carmichael Numbers and the Miller-Rabin test. The notions of Fermat witnesses and liars, and the proof that there aren't too many Fermat liars $\bmod N$ where N is composite and not Carmichael.
- Finding generators for \mathbb{Z}_{p}^{*}.

3. [Number Theory]: Fermat's Little theorem, Euler's theorem, Lagrange's theorem, Chinese Remainder theorem, \mathbb{Z}_{p}^{*} is a cyclic group, the number of elements of order d in \mathbb{Z}_{p}^{*}.
4. [Cryptography]:

- Caesar cipher and the One-time pad.
- Diffie-Hellman key exchange and El Gamal encryption.
- RSA public-key encryption.
- You will have 100 minutes to solve about five problems.
- Most of the material is from the first three chapters of the book (until Sec. 3.4).
- Make sure to go over the problem sets and the midterm practice test. Do not hesitate to e-mail me if you have any questions.
- Most problems can be solved easily with a thorough understanding of the material presented in class. One of the problems will involve some amount of creativity and original problem solving.

