MAT 302 Mid-term Checklist

♦ Do you know:

- 1. **[Groups]:** Groups \mathbb{Z}_N and \mathbb{Z}_N^* , and how to compute the Euler Totient Function $\phi(N)$, given the factorization of N?
- 2. [Algorithms]:
 - Euclid and Extended Euclid, application to computing inverses in \mathbb{Z}_N^* .
 - Exponentiation: how to compute $b^a \pmod{N}$ given b, a and N? The "square and multiply" algorithm for exponentiation.
 - Finding Roots: how to find b such that $b^a = c \pmod{N}$ given a, c and N? How to find roots for prime and composite N.
 - Discrete Log: how to find a such that $b^a = c \pmod{N}$ given b, c and N? The baby step giant step algorithm and its complexity.
 - Primality Testing: The Fermat test, Carmichael Numbers and the Miller-Rabin test. The notions of Fermat witnesses and liars, and the proof that there aren't too many Fermat liars mod N where N is composite and not Carmichael.
 - Finding generators for \mathbb{Z}_p^* .
- 3. [Number Theory]: Fermat's Little theorem, Euler's theorem, Lagrange's theorem, Chinese Remainder theorem, \mathbb{Z}_p^* is a cyclic group, the number of elements of order d in \mathbb{Z}_p^* .
- 4. [Cryptography]:
 - Caesar cipher and the One-time pad.
 - Diffie-Hellman key exchange and El Gamal encryption.
 - RSA public-key encryption.
- ♦ You will have 100 minutes to solve about five problems.
- Most of the material is from the first three chapters of the book (until Sec. 3.4).
- ♦ Make sure to go over the problem sets and the midterm practice test. Do not hesitate to e-mail me if you have any questions.
- ♦ Most problems can be solved easily with a thorough understanding of the material presented in class. One of the problems will involve some amount of creativity and original problem solving.