
CSC 2414 Lattices in Computer Science October 11, 2011

Lecture 5
Lecturer: Vinod Vaikuntanathan Scribe: Joel Oren

In the last class, we studied methods for (approximately) solving the following two problems:

• The approximate shortest vector problem, denoted SVPγ : We saw that for γ = 2n/2, SVPγ can be
solved in time polynomial in the length of its input (this is the LLL algorithm). For γ = 1, the best
known algorithm runs in time 2O(n) (this follows from the work of Ajtai, Kumar and Sivakumar who
exhibit a randomized 2O(n)-time algorithm, and Voulgaris and Micciancio who exhibit a deterministic
algorithm with the same running time).

• The approximate closest vector problem, denoted CVPγ : We saw that for γ = 2n/2, CVPγ can be solved
in polynomial time (this is Babai’s Nearest Plane algorithm). For γ = 1, the best known is a randomized
2O(n)-time algorithm (due to Ajtai, Kumar and Sivakumar) and an nO(n)-time deterministic algorithm
(due to Kannan).

Obtaining a deterministic 2O(n)-time algorithm is a tantalizing open question.

Today:

• We will first show that CVPγ is NP-complete for γ = 1. The NP-completeness is shown by a reduction
from the Subset Sum problem, which is a well-known NP-complete problem.

For γ >
√
n, it is generally believed that CVPγ is unlikely to be NP-hard.

• We will then take a look at the NP-completeness in a different way, and use it to attack a cryptographic
one-way function based on the Subset Sum problem.

In particular, the NP-completeness reduction gives us a way to solve the Subset Sum problem, given an
oracle that solves CVP exactly. Of course, CVP is hard to solve exactly in polynomial time. However,
upon closer look at the reduction, we observe that the reduction in fact gives us a way to solve Subset
Sum problems on the average, for certain parameters, given only an approximate solution to CVP.
Instantiating this with Babai’s nearest plane algorithm that computes a 2n/2-approximation to CVP,
we obtain an algorithm that solves random subset sum instances for certain classes of parameters which
suffices to break a proposed one-way function based on Subset Sum.

1 The Hardness of gapCVP

Before we give the hardness result, let us define the decision version of CV Pγ .

Definition 1 (gapCVP). Given a basis B ∈ Zm×n, a target vector t ∈ Zm, and r ∈ Q, output: 1 if
dist(t,L(B)) ≤ r, or 0 if dist(t,L(B)) > r.

Definition 2 (gapCVPγ). Given a basis B ∈ Zm×n, a target vector t ∈ Zm, and r ∈ Q, output: 1 if
dist(t,L(B)) ≤ r, or 0 if dist(t,L(B)) > γ · r.

Lemma 3 (without proof). CVP ≤t gapCVP

Theorem 4. gapCVP is NP-Complete.

Proof. Observe that gapCVP is in NP. This is because a witness to a gapCVP instance (B, t, r) is a vector
x ∈ L(B) such that ‖t − x‖ ≤ r. First, it is easy to see that the witness x can be written down using a
polynomial number of bits. Indeed, each coefficient of x differs from the corresponding coefficient of t by at

5-1

most r, meaning that representing x requires at most ndlog re bits. Furthermore, given such an x, checking
that it is a lattice vector and that ‖x− t‖ ≤ r can both be done in time polynomial in the input length.

We will now reduce the NP-complete problem of Subset Sum to gapCVP.

Definition 5 (Subset Sum). Given A1, . . . , An ∈ Z and T ∈ Z (a target value), decide if there are numbers

x1, . . . , xn ∈ {0, 1} such that

n∑
i=1

Ai · xi = T .

Subset-Sum is known to be NP-Complete. We will now reduce it to the gapCVP problem. Given an
instance of Subset-Sum (A1, . . . , An, T), construct a lattice basis, target vector, and gap value as follows:

B =

[
b1, . . . ,bn

]
=



A1 A2 · · · · · · An
2 0 0 · · · 0
0 2 0 · · · 0
0 0 2 · · · 0
...

...
...

0 · · · 0 2


∈ Z(n+1)×n, t =


T
1
1
...
1

 ∈ Zn+1, r =
√
n

Claim 6. If (A1, . . . , An, T) is a Subset-Sum instance, then (B, t, r) is a gapCVP instance.

Proof. Let x = (x1, . . . , xn) be a solution to the Subset-Sum instance; i.e.,

n∑
i=1

Aixi = T . Then the corre-

sponding lattice vector v = BxT =

(n∑
i=1

Aixi, 2x1, 2x2, . . . , 2xn

)
. Thus,

||v − t|| =

∥∥∥∥∥∥∥∥∥∥∥∥



n∑
i=1

Aixi

2x1
...

2xn

−

T
1
...
1


∥∥∥∥∥∥∥∥∥∥∥∥

=
√
n

where the last inequality follows from the fact that since xi ∈ {0, 1}, |2xi − 1| = 1 for all i = 1, . . . , n.

Claim 7. If there exists a v ∈ L(B) such that ||v− t|| ≤
√
n then (A1, . . . , An, T) is a Subset-Sum instance.

Proof. Let v = (v0, . . . , vn) ∈ L(B) such that dist(v, t) ≤
√
n. Now, v1, . . . , vn are all even. Thus, for all i,

|vi − 1| ≥ 1, which gives us that

dist(v, t) =
√

(v0 − T)2 + (v1 − 1)2 + · · ·+ (vn − 1)2 ≤
√
n

only if v0 = T (meaning, (v0 − T)2 = 0) and for all 1 ≤ i ≤ n, vi ∈ {0, 2}.
This shows us that

∑n
i=1Ai(vi/2) = T , concluding the proof.

Clearly, since the reduction above runs in polynomial time, it shows that CVP is NP-complete.

A natural thought to show the hardness of SVP is to come up with a reduction from CVP to SVP that
works as follows: Given an instance (B, t) of CVP, consider the matrix B′ = [B|t]. The shortest vector

would then be: arg min ||
n∑
i=1

xibi + xn+1t||. However, this reduction does not help us in general.

5-2

2 Solving Subset Sum on the Average using Approximate CVP

Context: A proposal for a one-way function based on the Subset-Sum problem.

Definition 8 (one-way function). Let F = {fn : Dn → Rn}n>0 be a family of functions domain Dn. fn ∈ F
is one-way if for all (probabilistic) polynomial time algorithm A, and for a sufficiently large n

Pr[fn(A(fn(x))) = fn(x)] <
2

3

assuming that x is chosen from Dn according to the uniform distribution.

Proposal: Let p be an n-bit prime (2n−1 < p ≤ 2n). Define a function f(A1, . . . , Am, x1, . . . , xm) =

(A1, . . . , Am,

n∑
i=1

Aixi), where x1, . . . , xn ∈ {0, 1}, and 0 ≤ Ai ≤ p− 1 < 2n.

Theorem 9 (Lagarias-Odlyzko). If n > 2m2 then f is not one-way.

Proof. 1. Pick a large enough number c > m · 2m

2. Construct an instance of CV P :

B =


cA1 cA2 · · · cAm

1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 1


(m+1)×n

t =


cT
0
0
...
0


3. Run x∗ ← NearestP lane(B, t). Output x∗.
Does this work?

Claim 10. dist(t, lat(B)) ≤
√
m.

Proof Idea This is true since by definition T =

n∑
i=1

xiAi for some x ∈ {0, 1}m.

Reminder: The NearestP lane algorithm returns a vector x∗ ∈ Zm such that ||Bx∗ − t|| ≤
√
m · 2m/2.

In order to conclude the proof, two things need to be proved:

1. x ∈ {0, 1}m

2.

n∑
i=1

Aix
∗
i = T (i.e. the returned vector is an exact solution).

We will begin with the second item first.

Claim 11.

n∑
i=1

Aix
∗
i = T

Proof. Say

n∑
i=1

Aix
∗
i 6= T . Then ||Bx∗−t|| ≥ c > m·2m (contradicting the approximation of NearestP lane).

Claim 12. |x∗i | ≤ 2m/2 ·
√
m < 2m

5-3

Proof. Suppose for contraction that the claim is false. Then ||Bx∗ − t|| ≥ |x∗i | > 2m/2 ·
√
m, which is a

contradiction to the approximation of the NearestP lane algorithm.

We now claim that the probability of having a different solution vector x ∈ {0, 1}m than x∗, returned by
the NearestP lane algorithm is small. We let z = x−x∗. Note that due to the previous claim, |zi| ≤ 2m+1.

Claim 13.

Pr[∃z 6= 0 :

m∑
i=1

ziAi] ≤
1

2

Proof. Fix z1, . . . , zm, then since A1, . . . , Am are chosen uniformly at random, Pr[

m∑
i=1

zi ·Ai = 0modp] =
1

p
.

Note: we choose 1 < 2n−1 ≤ 2n in such a way that we get uniform randomness over Zp. Using the union
bound we get:

Pr[∃z :
∑
i=1

mzi ·Ai = 0] ≤ (2 · 2m + 1)m · 1

p
≤ 1

p
· 2m

2

≤ 1

2

where in the first inequality we use the fact the bound on the sum in Zp provides an upper bound on the
sum in Z.

3 Small Solutions to Polynomial Equations Modulo Composites

Theorem 14 (H̊astad, Coppersmith). Let f(x) ∈ ZN [x] be of degree d and monic (the leading coefficient
is 1). There is a polytime (in (logN, d)) algorithm that finds all x such that (1) f(x) = 0(modN) (2)

|x| ≤ N1/d = β. (today we will discus cases where |x| ≤ N
2

d(d+1))

Note:

1. f has to be monic: consider p · x = 0(mod2p). In that case, all the even numbers are solutions to this
equation (in which case, the given running time is insufficient).

2. |x| ≤ N1/d: consider xr = 0(modpr).

Proof Idea Let f(x) =

d∑
i=0

aix
i. If we assume that |aiβi| ≤ N

d+1 ,∀i, then |f(x)| ≤ |f(β)| < N ⇒ f(x) = 0

(over Z). Hence, we would want to find an equivalent polynomial with the same solutions that satisfies the
inequality (but with small coefficients). Let Z = {N,Nx, . . . , Nxd−1, f(x)}.

Fact 15. Let a1, . . . , ad+1 ∈ ZN . Then

d∑
i=0

aiNx
i + ad+1f(x) = 0modN iff f(x) = 0modN .

1. Consider the lattice defined by the following basis:

B =



N 0 · · · a0
0 Nβ 0 · · · a1β
... Nβ2 · · · a2β

2

. . .

· · · Nβd−1
...

0 adβ
d = βd


(d+1)×(d+1)

5-4

2. Run LLL(B) to get z = (z0, . . . , zd+1) ∈ Zd+1 such that ||Bz|| is approximately small (i.e. an approx-
imation to the SVP).

3. Output

d∑
i=1

zi(Nxi) + zd+1 · F (x) , g(x).

By LLL and Minkowski’s first theorem:

||Bz|| ≤ 2d+1(det(L))1/(d+1) = cd · (Nd(

d∏
i=1

βi))
1

d+1 = cd ·Nd/(d+1) · βd/2 < N

d+ 1

⇒ β ≤ cdN
2

d(d+1)

5-5

