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Lecture 1
Lecturer: Vinod Vaikuntanathan Scribe: Vinod Vaikuntanathan

Lattices are amazing mathematical objects with applications all over mathematics and theoretical com-
puter science. Examples include

• Sphere Packing: A classical problem called the “Sphere Packing Problem” asks for a way to pack
the largest number of spheres of equal volume in 3-dimensional space (in an asymptotic sense, as the
volume of the available space goes to infinity). The so-called Kepler’s Conjecture, recently turned into
a theorem by Hales, states that the face-centered cubic lattice offers the optimal packing of spheres in
3 dimensions.

The optimal sphere packing in 2 and 3 dimensions are lattice packings – could this be the case in higher
dimensions as well? This remains a mystery.

• Error Correcting Codes: Generalizing to n dimensions, the sphere packing problem and friends
have applications to constructing error-correcting codes with the optimal rate.

• Number Theory: In mathematics, the study of lattices is called the “Geometry of Numbers”, a
term coined by Hermann Minkowski. Minkowski’s Theorem and subsequent developments have had
an enormous impact on Number Theory, Functional Analysis and Convex Geometry. Lattices have
been used to test various number theoretic conjectures, the most famous being a disproof of Merten’s
Conjecture by Odlyzko and te Riele in 1985.

Lattices have also been quite influential in Theoretical Computer Science:

• In Algorithms: The famed Lenstra-Lenstra-Lovász algorithm for the shortest vector problem has
generated a treasure-trove of algorithmic applications. Lattices have been used to construct an Integer
Linear Programming algorithm in constant dimensions, in factoring polynomials over the rationals,
and algorithms to find small solutions to systems of polynomial equations.

• In Complexity Theory: Lattices provide one of the most striking sources of problems with a worst-
case to average-case connection. NP-hard problems are widely believed to be hard in the worst case, but
are they hard on typical or average instances? For many problems and many average-case distributions,
we know that this is not the case. In contrast, for the (approximate) shortest vector problem, we can
show that finding a solution in a “random lattice” chosen from a certain easily sampleable distribution
is as hard as finding a solution in the worst case, namely for arbitrary lattices.

• In Cryptography: The first applications of lattices in Cryptography have been in breaking cryp-
tosystems, for example, variants of the knapsack cryptosystem, the NTRU cryptosystem and special
cases of the RSA function. More recently, however, lattices have been used quite successfully in con-
structing secure cryptographic algorithms that achieve highly expressive functionalities such as fully
homomorphic encryption.

In this course, we will study lattices from the point of view of theoretical computer science, first the
mathematics of lattices, then the algorithms and complexity theory and finally lattice-based cryptography.

Notation. We will denote the natural numbers by N, integers by Z, rationals by Q and the reals by R.
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1 Lattices

Definition 1 (Lattices). Given n linearly independent vectors b1, . . . ,bn ∈ Rm, the lattice generated by
them is defined as

L(b1, . . . ,bn)
def
=

{ n∑
i=1

xibi | xi ∈ Z
}

We call b1, . . . ,bn a basis of the lattice. Note that the definition requires b1, . . . ,bn to be linearly
independent over R (and not over Z).

We call n the rank of the lattice, and m the dimension of the lattice. In general, n ≤ m. When n = m, we
call the lattice a full-rank lattice. Throughout this course, we will focus on full-rank lattices – most results
we prove can be generalized to the non full-rank case.

We will use a notational short-hand when dealing with bases, denoting them by a matrix B whose columns
are the basis vectors b1, . . . ,bn. That is, we will write

B =

 | |
b1 . . . bn

| |


and thus, in this notation,

L(B)
def
= {Bx | x ∈ Zn}

In general, we treat all vectors as column vectors unless otherwise specified. For a matrix B (resp. row
vector v), BT (resp. vT ) denotes the transpose of B (resp. v).

Examples of Lattices.

1. Figure 1(a) shows the lattice in 2 dimensions generated by the vectors (1, 0)T and (0, 1)T . This lattice
is the set of all points in R2 with integer coordinates.

This can be generalized to n dimensions, where the lattice Zn is called the integer lattice.

2. Figure 1(b) shows a different basis for the same lattice, namely the basis consisting of the vectors
(1, 2)T and (2, 3)T .

3. Figure 1(c) shows a different lattice in 2 dimensions, generated by the basis vectors (2, 0)T and (1, 1)T .
Note that this is a sub-lattice of Z2, namely a subset of Z2 which is also a lattice. (We will formally
define sublattices later in the course).

4. In one dimension, all lattices are multiples of a single number. For example, the lattice generated by
(2) is the set of all even numbers.

5. All the examples we saw so far are full-rank lattices. Figure 1(d) shows a lattice in 2 dimensions
generated by the vector (1, 1)T – this lattice has rank 1. We will not deal with non full-rank lattices
in this course.

6. The set of points generated by (1) and (
√

2) in one dimension is not a lattice. First, this example does
not conform to Definition 1 since 1 and

√
2 are linearly dependent over R. Secondly, any n-dimensional

lattice is a discrete subset of Zn (see Lecture 2 for why this is the case). However, the set generated
by (1) and (

√
2) is not a discrete subset of Z since one can generate arbitrarily small numbers as linear

combinations of 1 and
√

2.

It is instructive to compare the definition of a lattice generated by n linearly independent vectors
b1, . . . ,bn to the definition of the span of these vectors.
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b2

b1

(a) The lattice Z2 with basis vectors (0, 1) and (1, 0).

b1

b2

(b) The lattice Z2 with a different basis consisting of vectors
(1, 2) and (2, 3). In fact, any lattice has infinitely many bases.

b1

b2

(c) A full-rank lattice generated by the basis vectors (1, 1) and
(2, 0). Note that this is a sub-lattice of Z2.

b1

(d) A non full-rank lattice with basis vector (1, 1)

Figure 1: Various lattices and their bases.
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Definition 2 (Span). Given n linearly independent vectors b1, . . . ,bn ∈ Rm, their span is defined as

Span(b1, . . . ,bn)
def
=

{ n∑
i=1

xibi | xi ∈ R
}

Note the difference between Definition 1 of a lattice generated by a set of vectors – which consists of all
of its integer linear combinations – and the above definition of the span of a set of vectors – which consists
of all of its linear combinations with real coefficients. The crucial power of lattices comes from the fact that
it is a discrete set (which the span is not).

Clearly, Span(b1, . . . ,bn) ⊃ L(b1, . . . ,bn).

2 Same Lattice, Many Bases

We already saw from the examples above (Figure 1(a) and Figure 1(b)) that the same lattice can have many
different bases. For example, it turns out that all the bases given below generate the same lattice, namely
Z2:

B1 =

(
1 0
0 1

)
and B2 =

(
2 1
1 1

)
and B3 =

(
647 64
91 9

)
but the following basis does not generate Z2, but only a proper sub-lattice of Z2.

B4 =

(
42 41
9 8

)
In fact, any lattice has infinitely many bases. In particular, the bases can have arbitrarily large coefficients.

A natural question to ask is: how can we efficiently tell if two given bases B and B′ generate the same
lattice? We will give two answers to this question – an algebraic answer and a geometric answer.

2.1 An Algebraic Characterization using Unimodular Matrices

Our first characterization provides an efficient algorithm to determine if two bases generate the same lattice.
In order to present the characterization, we first need to define the notion of a unimodular matrix.

Notation. For any x ∈ R, we will let |x| represent the absolute value of x.

Definition 3. A matrix U ∈ Zn×n is unimodular if |det(U)| = 1.

Here, det(U) denotes the determinant of the (square) matrix U, and | · | denotes the absolute value. For
example, the matrix

(
2 1
1 1

)
is unimodular, and so is

(
647 64
91 9

)
, but not

(
42 41
9 8

)
.

Proposition 4. If U is unimodular, so is U−1.

Proof. This follows from the way inverses are computed. In particular,

• Each entry in U−1 is the ratio of the determinant of a minor of U to the determinant of U itself. Since
the determinant of any minor of U is an integer, and the determinant of U is ±1, each entry of U−1

is an integer. Thus, U−1 ∈ Zn×n.

• det(U−1) = 1/ det(U) = ±1. Thus, |det(U−1)| = 1.

Together, these two observations mean that U is unimodular.

We can now state the characterization of equivalent bases.

Theorem 5. Given two full-rank bases B ∈ Rn×n and B′ ∈ Rn×n, the following two conditions are equiva-
lent:
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• L(B) = L(B′)

• There exists a unimodular matrix U such that B′ = BU.

Proof. (“⇒”) First, assume that L(B) = L(B′). Then, there are integer matrices V and V′ such that

B′ = BV and B = B′V′

It suffices to show that |det(V)| = |det(V′)| = 1.
Putting these two equations together, we have B′ = BV = B′(V′V). Since B′ is non-singular (remember:

B is a full-rank matrix, and so is B′) we can multiply both sides of the equation by (B′)−1 and we get

V′V = 1n (1)

were 1n denotes the n-by-n identity matrix.
Since determinant is multiplicative, we get det(V′) det(V) = 1. Since V and V′ are integer matrices,

their determinant is also an integer.
Putting these two facts together, we see that the only two choices are:

• det(V) = det(V′) = 1, or

• det(V) = det(V′) = −1

In either case, |det(V)| = |det(V′)| = 1, and we are done.

(“⇐”) For the other direction, assume that there is a unimodular matrix U such that B′ = BU. Then,
since U is an integer matrix,

L(B′) ⊆ L(B)

This is because each vector (column) of B′ can be written as a linear combination of vectors in B. Thus, the
set of all integer linear combinations of vectors in B′ is contained in the set of all integer linear combinations
of vectors in B.

Now, B = B′(U−1) where U−1 is also unimodular by Proposition 4. This shows that

L(B) ⊆ L(B′)

by the same argument as above. Together, we have L(B) = L(B′).

2.2 A Geometric Characterization using the Fundamental Parallelepiped

We need the notion of a fundamental parallelepiped of a basis b1, . . . ,bn.

Definition 6 (Fundamental Parallelepiped). Given n linearly independent vectors b1, . . . ,bn ∈ Rm, their
fundamental parallelepiped is defined as

P(b1, . . . ,bn)
def
=

{ n∑
i=1

xibi | xi ∈ R, 0 ≤ xi < 1

}
Thus, pictorially, a fundamental parallelepiped is the (half-open) region enclosed by the vectors b1, . . . ,bn.

Clearly, different bases of the same lattice generate different fundamental paralellepipeds. See Figure 2(a)
and 2(b).
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b2

b1

(a) The lattice Z2 with basis vectors (0, 1) and (1, 0) and
the associated fundamental parallelepiped.

b1
b2

(b) The lattice Z2 with a different basis consisting of vec-
tors (1, 1) and (2, 1), and the associated fundamental paral-
lelepiped.

Figure 2: Parallelepipeds for various bases of the lattice Z2. Note that the parallelepipeds in either case do
not contain any non-zero lattice point.

b1

b2

Figure 3: b1 and b2 do not form a basis of Z2. Note that the parallelepiped of b1 and b2 contains a
non-zero lattice point, namely (1, 0).
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Note that in Figures 2(a) and 2(b), the vectors b1 and b2 form a basis of the lattice, and the parallelepiped
associated to the basis does not contain any lattice point other than 0. On the other hand, in Figure 3, the
vectors b1 and b2 do not form a basis of the lattice, and the parallelepiped associated to the basis contains
a non-zero lattice point. In fact, this is not a coincidence as our next theorem shows.

Theorem 7. Let L be a full-rank n-dimensional lattice, and let b1, . . . ,bn ∈ Rn denote linearly independent
vectors in L. Then, b1, . . . ,bn form a basis of L if and only if P(b1, . . . ,bn) ∩ L = {0}.

Proof. (“⇒”) Suppose that b1, . . . ,bn is a basis of L. Let

a =

n∑
i=1

xibi ∈ L(b1, . . . ,bn) ∩ P(b1, . . . ,bn)

We will show that a = 0.
Since a ∈ L(b1, . . . ,bn), xi ∈ Z for all i. Since a ∈ P(b1, . . . ,bn), xi ∈ [0, 1) for all i. Together, this

means that xi = 0 for all i, and thus, a = 0.

(“⇐”) Suppose that P(b1, . . . ,bn) ∩ L = {0}. We would like to show that b1, . . . ,bn form a basis of L.
The vectors b1, . . . ,bn are linearly independent. Since they belong to L, L(b1, . . . ,bn) ⊆ L. What

remains is to show that L ⊆ L(b1, . . . ,bn). Pick any vector a ∈ L and write it as

a =

n∑
i=1

xibi where xi ∈ R

Consider now the vector

a′ =

n∑
i=1

bxicbi ∈ L(b1, . . . ,bn)

which is clearly in the lattice L(b1, . . . ,bn) since the coefficients bxic are integers. Therefore, the vector
a− a′ is in L(b1, . . . ,bn) as well. Now,

a− a′ =

n∑
i=1

(xi − bxic)bi ∈ P(b1, . . . ,bn)

is in the parallelepiped of b1, . . . ,bn since 0 ≤ xi − bxic < 1 for all i.
Since a− a′ ∈ L(b1, . . . ,bn) ∩ P(b1, . . . ,bn), it must be the case that a− a′ = 0 by assumption. Since

the vectors b1, . . . ,bn are linearly independent, this means that xi − bxic = 0 for all i which in turn means
that xi ∈ Z for all i.

Thus, a ∈ L(b1, . . . ,bn), showing us that L ⊆ L(b1, . . . ,bn).

2.3 Determinant of a Lattice

Another quantity associated to a lattice is its determinant, denoted det(L). The determinant of a lattice is the
n-dimensional volume of its fundamental parallelepiped, computed as the absolute value of the determinant
of its basis matrix B. A couple of facts about the determinant of a lattice are worth noting:

1. The parallelepipeds associated with different bases of a lattice have the same volume. Thus, the
determinant is a lattice invariant. This is easy to see using our characterization of equivalent bases
from Theorem 5.

Let B and B′ be any two lattice bases. By Theorem 5, there is a unimodular matrix U such that
B′ = BU. Thus, |det(B′)| = |det(B)| · | det(U)| = |det(B)| since |det(U)| = 1.

2. Intuitively, the determinant of a lattice is inversely proportional to its “density”. The larger the
determinant, the sparser the lattice.
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b̃1 = b1
b2

b̃2

(a) Gram-Schmidt orthogonalization of the vectors b1 and b2
in that order.

b2
b̃1 = b1

b̃2

(b) Gram-Schmidt orthogonalization of the same vectors,
but in the opposite order.

Figure 4: Gram-Schmidt Orthogonalization.

3 Gram-Schmidt Orthogonalization

Gram-Schmidt orthogonalization is a procedure in linear algebra that transforms a set of vectors b1, . . . ,bn

into a set of orthogonal vectors b̃1, . . . , b̃n. In two dimensions, this proceeds as follows:

• The first Gram-Schmidt vector b̃1 is b1 itself.

• The second Gram-Schmidt vector b̃2 is the component of b2 that is orthogonal to Span(b̃1). This can
be computed as

b̃2 = b2 −
(
〈b2, b̃1〉
〈b̃1, b̃1〉

)
b̃1

See Figure 4 for an illustration of this process.

In general, the Gram-Schmidt vectors are obtained by projecting each vector successively on the space
orthogonal to the span of all the previous vectors.

Definition 8 (Gram-Schmidt Orthogonalization). For a sequence of n linearly independent vectors b1, . . . ,bn ∈
Rn, we define their Gram-Schmidt orthogonalization as the sequence of vectors b̃1, . . . , b̃n defined as follows:

b̃i = bi −
i−1∑
j=1

µi,jb̃j where µi,j =
〈bi, b̃j〉
〈b̃j , b̃j〉

Thus, b̃j is the component of bi that is orthogonal to b̃1, . . . , b̃i−1. The coefficients µi,j are called the
Gram-Schmidt coefficients.
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Remarks.

1. True to its name, the different Gram-Schmidt vectors b̃1, . . . , b̃n are orthogonal to each other. That
is, for each i 6= j, 〈b̃i, b̃j〉 = 0. This is an easy consequence of Definition 8.

2. The span of b̃1, . . . , b̃i is the same as the span of b1, . . . ,bi for all 1 ≤ i ≤ n.

3. The vectors b̃1, . . . , b̃n do not form a lattice basis. In fact, the Gram-Schmidt vectors are not necessarily
in the lattice. See Figure 4 for example.

4. The (Euclidean) length of the Gram-Schmidt vector b̃i is at most the length of the basis vector bi.
Namely, ‖b̃i‖ ≤ ‖bi‖.

5. Clearly, as seen in Figure 4, the Gram-Schmidt vectors depend on the order in which the vectors
b1, . . . ,bn are processed.

Let b̃1/‖b̃1‖, . . . , b̃n/‖b̃n‖ denote the unit vectors in the direction of the Gram-Schmidt vectors. Then,
the Gram-Schmidt orthogonalization process can be written in matrix form as

 | |
b1 . . . bn

| |

 =

 | |
b̃1 . . . b̃n

| |

 ·


1 µ2,1 µ3,1 . . . µn,1

0 1 µ3,2 . . . µn,2

0 0 1 . . . µn,3

...
...

...
...

...
0 0 0 0 1



=

 | |
b̃1

‖b̃1‖
. . . b̃n

‖b̃n‖
| |

 ·

‖b̃1‖ µ2,1‖b̃1‖ µ3,1‖b̃1‖ . . . µn,1‖b̃1‖

0 ‖b̃2‖ µ3,2‖b̃2‖ . . . µn,2‖b̃2‖
0 0 ‖b̃3‖ . . . µn,3‖b̃3‖
...

...
...

...
...

0 0 0 0 ‖b̃n‖


Since the vectors b̃i

‖b̃i‖
are orthonormal, the determinant of the matrix with columns b̃i

‖b̃i‖
is 1.

Thus, we have

det(L(B)) =

n∏
i=1

‖b̃i‖

In other words, the Gram-Schmidt orthogonalization process is a volume-preserving transformation that
results in a set of orthogonal vectors b̃1, . . . , b̃n, whose enclosing parallelepiped is rectangular and generates
a volume of

∏n
i=1 ‖b̃i‖.

4 Successive Minima of a Lattice

A basic parameter of the lattice is the length of the shortest non-zero vector in the lattice (since any lattice
contains the zero vector which has norm zero, we have to ask for a non-zero vector). This parameter is also
called the first successive minimum of the lattice, and is denoted λ1(L). When we speak of length, we mean
the Euclidean norm defined as follows: for a vector x = (x1, . . . , xn) ∈ Rn, the Euclidean norm of x, denoted
‖x‖2 (or simply as ‖x‖ is defined as

‖x‖ =

√√√√ n∑
i=1

x2i

The Euclidean norm is also frequently referred to as the `2 norm. We can speak of other norms such as
the `1 norm – ‖x‖1 =

∑n
i=1 |xi| – and the `∞ norm – ‖x‖∞ = maxn

i=1 |xi|, but we will stick to the Euclidean
norm for most of this course.
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b1

b2

Figure 5: The shortest vector in the lattice generated by (1, 1) and (2, 0). λ1(L) =
√

2.

Figure 5 shows a shortest vector in the lattice generated by (1, 1) and (2, 0). The shortest vector is not
unique in general. There could be many, even exponentially many, shortest vectors. Clearly, there are at
least two – if v is a shortest vector in a lattice, then so is −v.

We will be interested in lower and upper bounds on λ1. We first show a lower bound on λ1 using Gram-
Schmidt orthogonalization. In the next lecture, we will prove Minkowski’s theorem which provides an upper
bound on λ1 in terms of the determinant of the lattice.

Lower Bound on λ1. We show the following theorem. Roughly speaking, the theorem says that the
shortest non-zero vector in a lattice is at least as long as the shortest Gram-Schmidt vector of a basis of the
lattice. To see why, observe that a lattice can be partitioned into many hyperplanes perpendicular to its
Gram-Schmidt vector b̃n. See Figure 6 for an illustration in two dimensions.

Now, there are two possibilities:

• There is a shortest non-zero vector in one of the hyper-planes not passing through the origin. In that
case, the vector has to have length at least ‖b̃n‖ ≥ minj ‖b̃j‖ since the ith such hyper-plane is at a

distance of i · ‖b̃n‖ from the origin.

• The shortest non-zero vector lives in the hyper-plane that passes through the origin, in which case,
repeat the same argument in dimension n− 1 with the (n− 1)-dimensional sublattice partitioned into
hyper-planes perpendicular to b̃n−1.

Eventually, if the argument reaches dimension 1, the shortest non-zero vector has to have length at least
‖b1‖ = ‖b̃1‖ ≥ minj ‖b̃j‖.

The formal statement and proof of the theorem follows.
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b̃1 = b1
b2

b̃2

Figure 6: The lattice is partitioned into many parallel hyperplanes perpendicular to b̃2. Either the shortest
vector lives in a hyperplane that does not pass through the origin, in which case its length is at least ‖b̃2‖
or it lives in the hyperplane that passes through the origin, in which case its length is at least b̃1 = ‖b̃1‖. In
general, in two dimensions, λ1(L) ≥ min{‖b̃1‖, ‖b̃2‖}. This argument can be generalized to n dimensions.

Theorem 9. Let B be a rank-n lattice basis, and B̃ be its Gram-Schmidt orthogonalization. Then,

λ1(L(B)) ≥ min
i=1,...,n

‖b̃i‖ > 0

Proof. Let x ∈ Zn be any non-zero integer vector. We would like to show that the lattice vector Bx ∈ L(B)
has length at least mini ‖b̃i‖.

The proof follows by calculating the quantity |〈Bx, b̃j〉| in two different ways.

1. Let j ∈ {1, . . . , n} be the largest index such that xj 6= 0. Then,

|〈Bx, b̃j〉| = |〈
n∑

i=1

xibi, b̃j〉| = |
n∑

i=1

xi〈bi, b̃j〉| = |xj |〈b̃j , b̃j〉 = |xj | · ‖b̃j‖2 (2)

where the first equality follows by rewriting Bx as
∑n

i=1 xibi, the second follows by the linearity of the inner
product, and the third because

• for j < i, 〈bi, b̃j〉 = 0

• for j > i, xj = 0 by the definition of j.

The fourth equality follows by the definition of ‖b̃j‖2 = 〈b̃j , b̃j〉.

2. On the other hand,
|〈Bx, b̃j〉| ≤ ‖Bx‖ · ‖b̃j‖ (3)

by the Cauchy-Schwarz inequality.
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Putting together Equations 2 and 3, we get

‖Bx‖ ≥ |〈Bx, b̃j〉|
‖b̃j‖

= |xj | · ‖b̃j‖ ≥ ‖b̃j‖ ≥ min
i=1...n

‖b̃i‖

where the third inequality follows from the fact that xj is a non-zero integer. Since the length of any lattice

vector is at least mini ‖b̃i‖,
λ1(B) ≥ min

i=1...n
‖b̃i‖

Since b1, . . . ,bn are linearly independent, this quantity is strictly positive.

A corollary of this theorem is that a lattice is a discrete set. In other words, lattice points cannot be
arbitrarily close to one another. Formally:

Corollary 10. For every lattice L, there is an ε = ε(L) > 0 such that ‖x − y‖ ≥ ε for any two unequal
lattice points x,y ∈ L.

Proof. For any two x 6= y ∈ L, x − y ∈ L. Then, ‖x − y‖ ≥ λ1(L) > 0. In particular, set ε = λ1(L) to
obtain the statement of the corollary.

In fact, this leads us to a basis-independent characterization of a lattice. Namely, every discrete subset
of Rn that is closed under subtraction is a lattice.
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