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The following four problems look different, but we can use one technique to solve all of them.

1. (Complexity) GapSV P√ n
log n
∈ coAM

2. (Algorithms) SV P1 can be solved in 2O(n) randomized time.

3. (Cryptography) Worst-case to average case results.

(a) GapSV Pn ≤ SIS
(b) GapSV Pn ≤ LWE

Here we show the first one. We start with a quick review of definitions.

Definition 1 (GapSV Pγ). GapSV Pγ is a promise problem, where inputs are guaranteed to be either a YES
or NO instance. Here, these are,

• YES: (L, s) such that λ1(L) ≤ s.

• NO: (L, s) such that λ1(L) > γs.

Definition 2 (AM). An Arthur-Merlin Protocol for a language L consists of an unbounded M and a
polynomial time A with a source of randomness r, such that for an input x, and a transcript of messages
between A and M , after which A accepts or rejects, we have,

• If x ∈ Y ES, then A accepts with probability 1.

• If x ∈ No, then for any A, P[A accepts] ≤ 1
3 .

Note that GapSV Pγ ∈ NP . To see this, on a YES instance, a short vector is a certificate for this
property.

Theorem 1 (Goldreich-Goldwasser 2000). For γ = ω(
√

n
logn ), GapSV Pγ ∈ coAM .

Proof. We will instead prove that coGapSV Pγ ∈ AM . The idea behind the protocol for this is the following.
The verifier picks either the target point or a lattice point, and sends a point close to it to the prover. The
prover then responds with a guess as to whether the point came from a lattice point or the target point,
and if they are close together, the prover has some chance of being wrong. See Figures 1 and 2 for a visual
sketch of the idea.

More precisely, our protocol is the following. Given a basis B, and a target point t, the verifier picks
a random x ∈ B(0, γ2 ), and b ∈ {0, 1}, and sends zb = x + bt mod P(B), where P(B) is the fundamental
parallelpiped of B. Then, the prover sends b′ to the verifier, and the verifier accepts if b = b′.

Now, we just need to show that this protocol is complete and sound. To see it’s complete, if dist(t,L(B)) >
γ, then B(0, γ2 ) ∩ B(t, γ2 ) = ∅. Then the prover can always distinguish z0 from z1, and with probability 1,
the verifier accepts.

For soundess, we want to show that with probability at most 1 − 1
poly(n) can z0 and z1 be confused. If

this is the case, with at least an inverse polynomial probability, the verifier rejects. This is equivalent to
bounding the volume of |B(0, γ2 )∩B(t, γ2 )|. We can bound this by a cylinder. This gives, using the fact that

the volume of a unit n-ball is πn/2

Γ(n/2+1) , and Stirling’s approximation,
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Figure 1: The target is close to the lattice.

Figure 2: The target is far from the lattice.
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This means that there is at least an inverse polynomial probability that a random point could have either
b = 0 or b = 1, which means that this protocol is also sound.
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