6.876 Advanced Topics in Cryptography: Lattices

Lecture 6
Lecturer: Vinod Vaikuntanathan
Scribe: Gaurav Singh

The following four problems look different, but we can use one technique to solve all of them.

1. (Complexity) GapSV $P_{\sqrt{\log n}} \in \operatorname{coAM}$
2. (Algorithms) $S V P_{1}$ can be solved in $2^{O(n)}$ randomized time.
3. (Cryptography) Worst-case to average case results.
(a) $\operatorname{GapSV} P_{n} \leq S I S$
(b) GapSV $P_{n} \leq L W E$

Here we show the first one. We start with a quick review of definitions.
Definition $1\left(G a p S V P_{\gamma}\right) . G a p S V P_{\gamma}$ is a promise problem, where inputs are guaranteed to be either a YES or NO instance. Here, these are,

- YES: (\mathcal{L}, s) such that $\lambda_{1}(\mathcal{L}) \leq s$.
- NO: (\mathcal{L}, s) such that $\lambda_{1}(\mathcal{L})>\gamma s$.

Definition 2 (AM). An Arthur-Merlin Protocol for a language L consists of an unbounded M and a polynomial time A with a source of randomness r, such that for an input x, and a transcript of messages between A and M, after which A accepts or rejects, we have,

- If $x \in Y E S$, then A accepts with probability 1 .
- If $x \in N o$, then for any $A, \mathbb{P}[A$ accepts $] \leq \frac{1}{3}$.

Note that $G a p S V P_{\gamma} \in N P$. To see this, on a YES instance, a short vector is a certificate for this property.

Theorem 1 (Goldreich-Goldwasser 2000). For $\gamma=\omega\left(\sqrt{\frac{n}{\log n}}\right)$, GapSVP $P_{\gamma} \in \operatorname{coAM}$.
Proof. We will instead prove that $\operatorname{coGapSV} P_{\gamma} \in A M$. The idea behind the protocol for this is the following. The verifier picks either the target point or a lattice point, and sends a point close to it to the prover. The prover then responds with a guess as to whether the point came from a lattice point or the target point, and if they are close together, the prover has some chance of being wrong. See Figures 1 and 2 for a visual sketch of the idea.

More precisely, our protocol is the following. Given a basis B, and a target point t, the verifier picks a random $x \in B\left(0, \frac{\gamma}{2}\right)$, and $b \in\{0,1\}$, and sends $z_{b}=x+b t \bmod \mathcal{P}(\mathbf{B})$, where $\mathcal{P}(\mathbf{B})$ is the fundamental parallelpiped of \mathbf{B}. Then, the prover sends b^{\prime} to the verifier, and the verifier accepts if $b=b^{\prime}$.

Now, we just need to show that this protocol is complete and sound. To see it's complete, if $\operatorname{dist}(t, \mathcal{L}(\mathbf{B}))>$ γ, then $B\left(0, \frac{\gamma}{2}\right) \cap B\left(t, \frac{\gamma}{2}\right)=\emptyset$. Then the prover can always distinguish z_{0} from z_{1}, and with probability 1 , the verifier accepts.

For soundess, we want to show that with probability at most $1-\frac{1}{\text { poly(n) }}$ can z_{0} and z_{1} be confused. If this is the case, with at least an inverse polynomial probability, the verifier rejects. This is equivalent to bounding the volume of $\left|B\left(0, \frac{\gamma}{2}\right) \cap B\left(t, \frac{\gamma}{2}\right)\right|$. We can bound this by a cylinder. This gives, using the fact that the volume of a unit n-ball is $\frac{\pi^{n / 2}}{\Gamma(n / 2+1)}$, and Stirling's approximation,

Figure 1: The target is close to the lattice.

Figure 2: The target is far from the lattice.

$$
\begin{aligned}
\frac{\left|B\left(0, \frac{\gamma}{2}\right) \cap B\left(t, \frac{\gamma}{2}\right)\right|}{\left|B\left(0, \frac{\gamma}{2}\right)\right|} & \geq \frac{|t|\left(\frac{\pi^{(n-1) / 2}}{\Gamma\left(\frac{n-1}{2}+1\right)}\right)\left(\sqrt{\left(\frac{\gamma}{2}\right)^{2}-|t|^{2}}\right)^{n-1}}{\left(\frac{\pi^{n / 2}}{\Gamma\left(\frac{n}{2}+1\right)}\right)\left(\frac{\gamma}{2}\right)^{n}} \\
& =\frac{\Gamma\left(\frac{n}{2}+1\right)}{\sqrt{\pi} \Gamma\left(\frac{n-1}{2}+1\right)}\left(\frac{2|t|\left(\gamma^{2}-4|t|^{2}\right)^{(n-1) / 2}}{\gamma^{n}}\right) \\
& =\frac{C \sqrt{2 \pi(n / 2+1)}\left(\frac{n / 2+1}{e}\right)^{n / 2+1}}{\sqrt{\pi} c \sqrt{2 \pi((n-1) / 2+1)}\left(\frac{(n-1) / 2+1}{e}\right)^{(n-1) / 2+1}}\left(\frac{2|t|\left(\gamma^{2}-4|t|^{2}\right)^{(n-1) / 2}}{\gamma^{n}}\right) \\
& \approx \frac{c^{\prime} \sqrt{n}|t|\left(\gamma^{2}-4|t|^{2}\right)^{(n-1) / 2}}{\gamma^{n}} \\
& =c^{\prime} \sqrt{n} \frac{|t|}{\gamma}\left(1-4\left(\frac{|t|}{\gamma}\right)^{2}\right)^{(n-1) / 2} \\
& \geq c^{\prime} \sqrt{n} \sqrt{\frac{\log n}{n}}\left(1-\frac{4 \log n}{n}\right)^{(n-1) / 2} \\
& =c^{\prime} \sqrt{\log n}\left(1-\frac{4 \log n}{n}\right)^{(n-1) / 2} \\
& \approx c^{\prime} \sqrt{\log n} e^{-c_{1} \log n} \\
& \approx \frac{1}{p o l y(n)}
\end{aligned}
$$

This means that there is at least an inverse polynomial probability that a random point could have either $b=0$ or $b=1$, which means that this protocol is also sound.

References

[1] . Goldreich and S. Goldwasser. On the limits of nonapproximability of lattice problems. J. Comput. System Sci., 60(3):540563, 2000.

