September 23, 2015

Lecture 5

Lecturer: Vinod Vaikuntanathan

Scribe: Rio LaVigne

This lecture covers:

- Solving low-density subset sum with LLL.
- Coppersmith's Theorem: finding small roots of polynomials.
- Factoring an RSA modulus knowing a few higher order bits of one of the factors using Coppersmith.

1 Solving Low-density Subset Sum

Definition 1. Subset sum (SSUM) is the following problem: given $a_1, \ldots, a_n \in [0, X]$ and $s = \sum a_i x_i$ where each $x_i \in \{0, 1\}$, find $\vec{x} = (x_1, \ldots, x_n)$.

Definition 2. The density of a subset sum problem is defined as $\frac{n}{\log X}$; the ratio between the number of elements in your sum to the number of bits in the range of $a'_i s$.

Low density means $\frac{n}{\log X}$ is very small, for example $\frac{1}{n^2}$ where $X = 2^{n^2}$.

Theorem 3 (Frieze). Let $X = 2^{\Omega(n^2)}$. There is an average-case polytime algorithm for SSUM.

Proof. We are given $a_1, \dots, a_n \in [0, X]$, and the sum $s = \sum_{i=1}^n a_i x_i$, where each $x_i \in \{0, 1\}$. First, we are going to phrase this as an SVP in a lattice. We define a lattice

$$\mathcal{L}_{a_1,...,a_n,s} = \begin{bmatrix} I & 0 \\ I & 0 \\ \vdots \\ a_1 & a_2 & \dots & a_n & s \end{bmatrix}$$

in n+1 dimensions. Notice that if we make a column vector of the x_i , we get

$$\begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \ddots & \\ 0 & 0 & \dots & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \\ -1 \end{bmatrix} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \\ 0 \end{bmatrix},$$

and only a solution to the subset sum problem will have this property. So, a SSUM solution is a lattice vector of length \sqrt{n} such that

$$\mathcal{L} \cdot \begin{bmatrix} x \\ -1 \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix}.$$

We want to guarantee that the only small solutions are of the form αx – it is easy to find α if we know x, so we will scale each a_i and the sum s in the basis by some large $\beta = 2^{\Omega(n)}$. The problem then becomes finding

a vector z of dimension n + 1 such that

$$\begin{bmatrix} I \\ I \\ a_1 \\ a_2 \\ \dots \\ a_n \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} z_1 \\ vdots \\ z_n \\ z_{n+1} \end{bmatrix} = \begin{bmatrix} z_1 \\ vdots \\ z_n \\ 0 \end{bmatrix}.$$

Claim 4. With high probability, the only small solutions are $\alpha \cdot \begin{bmatrix} x \\ -1 \end{bmatrix}$.

Proof. We start with $\sum_{i=1}^{n} \beta a_i z_i + \beta z_{n+1} s = 0$, and we can divide out by β to get $\sum_{i=1}^{n} a_i z_i + z_{n+1} s = 0$. We also have that $\sum_{i=1}^{n} a_i x_i - s = 0$ from the original solution. For $i = 1, \dots, n$, let $y_i = x_i - z_i$ and $y_{n+1} = z_{n+1} - 1$. Subtracting one from the other, we have

$$\sum_{i=1}^{n} a_i (x_i - z_i) - (z_{n+1} - 1)s = \sum_{i=1}^{n} a_i y_i - y_{n+1}s = 0.$$

Now, notice two things

- 1. First, fix the y_i , and we have $\Pr_{a_i}[\sum a_i y_i y_{n+1}s = 0] = \frac{1}{X}$.
- 2. Now, we note that the number of possible y_i 's is small, $2^{O(n^2)}$, based on the approximation LLL outputs.

So,

$$\Pr[\sum a_i y_i - y_{n+1} s = 0 \text{ for some } y \neq 0] = \frac{1}{X} \cdot 2^{O(n^2)}.$$

$$\frac{1}{X} \cdot 2^{O(n^2)}.$$

Since $X = 2^{\Omega n^2}, \frac{1}{X} \cdot 2^{O(n^2)}.$

We can run the LLL algorithm for approximating the shortest vector. The output vector, z, is guaranteed to be a $2^{O(n)}$ -approximate shortest vector. From the claim, we know that z, with high probability, is of the form $\alpha \begin{bmatrix} x \\ -1 \end{bmatrix}$. Finding x from the product is easy; since each $x_i \in \{0, 1\}$, we know the value of α . \Box

2 Coppersmith and Applications

Theorem 5 (Coppersmith). There is a poly(log N, d)-time algorithm that given $f(x) \in \mathbb{Z}[x]$, a degree d monic polynomial, outputs all x_0 such that

- $f(x_0) = 0 \mod N$
- $|x_0| < N^{1/d}$.

Note: this implies that there are polynomially many small roots mod N!

Example 1. Consider the polynomial $x^3 - a = 0 \mod N$. We want to find all roots $|x_0| < N^{1/3}$. We notice that $|x_0| < N^{1/3}$ implies $x_0^3 < N$. This implies $x_0^3 = a$ over \mathbb{Z} . We have reduced the problem to finding cube roots over \mathbb{Z} !

Proof. So, let f be any monic polynomial over \mathbb{Z} , degree d, and $B = N^{1/d}$. We can represent $f(x) = \sum_{i=0}^{d} f_i x^i$ (note that $f_d = 1$). From f, we will define $h(x) = \sum h_i x^i$ so that

- All roots x_0 of $f(x) \mod N$ are also roots of h(x).
- $|h_i B^i| < \frac{N}{d+1}.$

This implies that for every root x_0 , $|h(x_0)| \le |h(B)| \le \sum h_i B^i < N$. So, we will have reduced the problem to finding roots of h over \mathbb{Z} .

To find h, we start with a basis set of size d + 1: $\{N, Nx, \ldots, Nx^d\}$. We will let our basis

	$\lceil N \rceil$	0	0		0	f_0	
	0	BN	0	•••	0	f_1B	
	0	0	B^2N	• • •	0	$f_2 B^2$	
$\mathbb{B} =$	0	0	0	·.	0	$f_{3}B^{3}$	
	:						
	0	0	0		$B^{d-1}N$	$f_{d-1}B^{d-1}$	
	0	0	0		0	B^d	

where the rightmost column of \mathbb{B} are the coefficients of f(Bx), and the diagonal is $B^i N$.

If we run LLL on $\mathcal{L}(\mathbb{B})$, then we get an approximate small vector (v_0, v_1, \ldots, v_d) . We notice that each coordinate v_i of v is divisible by B^i , from our basis. Thus, we can define the integer coefficients of h as $h_i = v_i/B^i$. Now, by construction, for every x_0 such that $f(x_0) = 0 \mod N$, $h(x_0) = 0$. Finally, we need to show that $|h_i B^i| < \frac{N}{d+1}$.

Recall that LLL is a 2^{d+1} approximation, and that Minkowski's bound tells us that $\lambda_1 \leq \sqrt{d+1} \det(\mathbb{B})^{1/(d+1)}$. The magnitude of v is

$$||v|| \le 2^{d+1}\sqrt{d+1}\det(\mathbb{B}) = 2^{d+1}\sqrt{d+1}(N^d \cdot B^{d(d+1)/2})^{1/d} = 2^{d+1}\sqrt{d+1}N^{d/(d+1)}B^{d/2} = c_d N^{d/(d+1)}B^{d/2}$$

where $c_d = 2^{d+1}\sqrt{d+1}$ is a constant only dependent on d. Also, $\frac{d}{d+1} = 1 - \frac{1}{d+1}$, so if we take B small enough,

$$h_i B^i = |v| \le ||v|| \le c_d B^{d/2} N^{1-1/(d+1)} < \frac{N}{d+1}$$

We can then factor h over \mathbb{Z} to get the roots of f over \mathbb{Z}_N .

2.1 Factoring with a few known bits

The goal will be to break RSA in a modulus N = pq when we are given half of the bits of p, $1/2 \log p$ bits, in poly $(\log N)$ time. Before Coppersmith's algorithm, Rivest and Shamir were able to find p with $2/3 \log p$ bits.

Theorem 6. Given N = pq, $p \approx N^{\gamma}$ where $\gamma \geq 2/3$, and $\tilde{p} =$ half of the bits of p, we can find all of p in poly(log N) time.

Proof. Given \tilde{p} , we let $f(x) = x + \tilde{p}$. Our goal will be to find a root of $f(x) \mod p$ without prior knowledge of p. We will define a bound $B < N^{1/3}$ to use in Coppersmith's algorithm. We get the following 2-dimensional basis:

$$\mathbb{B} = \begin{bmatrix} N & \tilde{p} \\ 0 & B \end{bmatrix}$$

In this lattice, Minkowski's bound tells us that $\lambda_1 \leq \det(\mathbb{B})^{1/2} = \sqrt{NB}$. Running LLL on \mathbb{B} gives us a small vector $v = \begin{bmatrix} h_0 \\ Bh_1 \end{bmatrix}$. Since LLL finds a 2^d-approximate small vector (and d = 2), $||v|| \leq 2\sqrt{NB}$. We wanted to define B so that the LLL approximation gives us a small enough vector. So, we need $||v|| , meaning <math>2\sqrt{NB} < N^{2/3}$. If we let $B < N^{1/3}$, this inequality holds.

So, for any $x_0 < B$ in \mathbb{Z} , $h(x_0) = h_0 + h_1 x_0 \leq ||v|| \leq 2\sqrt{NB}$. Now, consider $x_0 < B$ an integral root of h. Since B < p, x_0 is a root of $h \mod p$. $|x_0| < \tilde{p}$, so $f(x_0) = x_0 + \tilde{p} \equiv 0 \mod p$, meaning $gcd(f(x_0), N) = p$. We have found the rest of the bits of p!

2.2 Attacks on padding in low exponent RSA

Recall how RSA works. A modulus N = pq (usually on the order of 2000 bits) and a public key e are public. The decryption key, $d = e^{-1} \mod \phi(N)$, is private. For Alice to send a message M to Bob, she computes $C = f(M) = M^e \mod N$. Bob, with his private key, can decrypt $C: C^d = M^{ed} \mod N = M \mod N$.

Notice that this is a deterministic scheme, so an attacker can guess at what message is being sent and check by encrypting his guess against the original message.

A common defense against this kind of attack is to pad the message with random bits. So, for a message $M \in \{0,1\}^n$, we encrypt by finding a random $r \in \{0,1\}^m$ and letting our ciphertext C = f(M||r). Mathematically, we are taking $M, r \in \mathbb{Z}_N$, and letting $M' = 2^m M + r$. We will soon show how this kind of padding offers no security.

Lemma 7. Let e = 3 and $\ell(x) = ax + b$ for $a, b \neq 0$. Given the RSA public parameters e, N and two ciphertexts $C_1, C_2 \in \mathbb{Z}_N^*$, where $C_1 = f(M_1)$ and $C_2 = f(M_2^e)$ for messages M_1, M_2 so that $M_1 = \ell(M_2)$, we can find both M_1 and M_2 efficiently.

Proof. Let $g_1(x) = \ell(x)^e - C_1$ and $g_2(x) = x^e - C_2$. Notice that M_2 is a root of both g_1 and g_2 . If we can prove that $(x - M_2)$ is the gcd of g_1 and g_2 , then we can easily compute $(x - M_2)$ using the Euclidean algorithm on g_1 and g_2 .

Recall that RSA is a bijection, so there is only one root in \mathbb{Z}_N of g_2 , and that root is M_2 . So, $g_2(x) = (x - M_2)g'(x)$ where g' is a quadratic irreducible in \mathbb{Z}_N . So, $gcd(g_1, g_2) = (x - M_2)$ or g_2 . However, since $b \neq 0, M_1 \neq M_2$, so $g_2 \nmid g_1$. Therefore $gcd(g_1, g_2) = (x - M_2)$.

Theorem 8. Let $N \approx 2^n$ be an RSA modulus, e = 3, and the padding length $m \leq \lfloor n/e^2 \rfloor$. Given $C_1 = f(M||r_1)$ and $C_2 = f(M||r_2)$, where $r_1 \neq r_2$, we can recover M efficiently.

Proof. Let's define $M_1 = 2^m M + r_1$ and $M_2 = 2^m M + r_2$. Our goal will be to determine M and r_1 and r_2 . So, let's let x be our unknown message and y be our unknown padding. Based on these variables, we define

$$g_1(x,y) = x^e - C_1 = x^e - M_1^e$$

$$g_2(x,y) = (x+y)^e - C_2 = (x+y)^e - M_2^e.$$

Since RSA is a bijection, g_1 implies that $x = M_2$. Given that x = M, g_2 implies that $y = r_2 - r_1$.

Next, we want to consider the *resultant* of g_1 and g_2 . The resultant on two polynomials p(x) and q(x) is defined as

$$\operatorname{res}_{x}(p(x),q(x)) = \prod_{p(x_1)=q(x_2)=0} (x_1 - x_2).$$

There are a couple of things we can note about the resultant:

- If p and q share a root, then $\operatorname{res}_x(p(x), q(x)) = 0$.
- $\operatorname{res}_x(p,q)$ is also the determinant of the Sylvester matrix of p and q, $S_{p,q}$. Therefore, it can be computed efficiently.

We will want to solve for y first, so we compute the resultant of g_1 and g_2 based on the x-coefficients of y. Notice that $g_1(x, y)$ is degree 0 with respect to y and that $g_2(x, y)$ is degree e = 3, so $\operatorname{res}_x(g_1, g_2)$ has degree at most e^2 in y.

Let $h(y) = \operatorname{res}_x(g_1, g_2)$. Notice that $\Delta = r_2 - r_1$ is a root of h, since setting y to Δ makes M_1 a root of both g_1 and g_2 . We also have that Δ is small; $|\Delta| < 2^m < N^{1/e^2}$. So, we can run Coppersmith's root-finding algorithm to get a polynomial list of candidate Δ s.

For each candidate Δ , we let $\ell = x - \Delta$ and use the algorithm in lemma 7, revealing candidates M_1 and M_2 . We check if we are successful by re-encrypting them to see if they are equal to C_1 and C_2 .

References

- [1] Chris Piekert, Lattices in Cryptography Lecture 3: LLL, Coppersmith, University of Michigan, 2015, http://web.eecs.umich.edu/ cpeikert/lic15/lec03.pdf.
- [2] Chris Piekert, Lattices in Cryptography Lecture 4: Coppersmith, Cryptanalysis, University of Michigan, 2015, http://web.eecs.umich.edu/ cpeikert/lic15/lec04.pdf.