6.876 Advanced Topics in Cryptography: Lattices	September 23, 2015
Lecture 5	
Lecturer: Vinod Vaikuntanathan	

This lecture covers:

- Solving low-density subset sum with LLL.
- Coppersmith's Theorem: finding small roots of polynomials.
- Factoring an RSA modulus knowing a few higher order bits of one of the factors using Coppersmith.

1 Solving Low-density Subset Sum

Definition 1. Subset sum (SSUM) is the following problem: given $a_{1}, \ldots, a_{n} \in[0, X]$ and $s=\sum a_{i} x_{i}$ where each $x_{i} \in\{0,1\}$, find $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$.

Definition 2. The density of a subset sum problem is defined as $\frac{n}{\log X}$; the ratio between the number of elements in your sum to the number of bits in the range of $a_{i}^{\prime} s$.

Low density means $\frac{n}{\log X}$ is very small, for example $\frac{1}{n^{2}}$ where $X=2^{n^{2}}$.
Theorem 3 (Frieze). Let $X=2^{\Omega\left(n^{2}\right)}$. There is an average-case polytime algorithm for SSUM.
Proof. We are given $a_{1}, \cdots, a_{n} \in[0, X]$, and the sum $s=\sum_{i=1}^{n} a_{i} x_{i}$, where each $x_{i} \in\{0,1\}$. First, we are going to phrase this as an SVP in a lattice. We define a lattice

$$
\mathcal{L}_{a_{1}, \ldots, a_{n}, s}=\left[\begin{array}{cccc}
& & \\
& \\
& & & \\
& & & 0 \\
0 \\
\vdots \\
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right]
$$

in $n+1$ dimensions. Notice that if we make a column vector of the x_{i}, we get
and only a solution to the subset sum problem will have this property. So, a SSUM solution is a lattice vector of length \sqrt{n} such that

$$
\mathcal{L} \cdot\left[\begin{array}{c}
x \\
-1
\end{array}\right]=\left[\begin{array}{l}
x \\
0
\end{array}\right] .
$$

We want to guarantee that the only small solutions are of the form αx - it is easy to find α if we know x, so we will scale each a_{i} and the sum s in the basis by some large $\beta=2^{\Omega(n)}$. The problem then becomes finding
a vector z of dimension $n+1$ such that

$$
\left[\begin{array}{ccccc}
& {\left[\begin{array}{ccc}
& & \\
& & \\
& & \\
& & \\
a_{1} & a_{2} & \ldots
\end{array} a_{n}\right.} & & \\
& \\
& \\
&
\end{array}\right]\left[\begin{array}{c}
z_{1} \\
v \operatorname{dots} \\
z_{n} \\
z_{n+1}
\end{array}\right]=\left[\begin{array}{c}
z_{1} \\
v \operatorname{dots} \\
z_{n} \\
0
\end{array}\right] .
$$

Claim 4. With high probability, the only small solutions are $\alpha \cdot\left[\begin{array}{c}x \\ -1\end{array}\right]$.
Proof. We start with $\sum_{i=1}^{n} \beta a_{i} z_{i}+\beta z_{n+1} s=0$, and we can divide out by β to get $\sum_{i=1}^{n} a_{i} z_{i}+z_{n+1} s=0$. We also have that $\sum_{i=1}^{n} a_{i} x_{i}-s=0$ from the original solution. For $i=1, \cdots, n$, let $y_{i}=x_{i}-z_{i}$ and $y_{n+1}=z_{n+1}-1$. Subtracting one from the other, we have

$$
\sum_{i=1}^{n} a_{i}\left(x_{i}-z_{i}\right)-\left(z_{n+1}-1\right) s=\sum_{i=1}^{n} a_{i} y_{i}-y_{n+1} s=0
$$

Now, notice two things

1. First, fix the y_{i}, and we have $\operatorname{Pr}_{a_{i}}\left[\sum a_{i} y_{i}-y_{n+1} s=0\right]=\frac{1}{X}$.
2. Now, we note that the number of possible y_{i} 's is small, $2^{O\left(n^{2}\right)}$, based on the approximation LLL outputs.

So,

$$
\operatorname{Pr}\left[\sum a_{i} y_{i}-y_{n+1} s=0 \text { for some } y \neq 0\right]=\frac{1}{X} \cdot 2^{O\left(n^{2}\right)}
$$

Since $X=2^{\Omega n^{2}}, \frac{1}{X} \cdot 2^{O\left(n^{2}\right)}$.
We can run the LLL algorithm for approximating the shortest vector. The output vector, z, is guaranteed to be a $2^{O(n)}$-approximate shortest vector. From the claim, we know that z, with high probability, is of the form $\alpha\left[\begin{array}{c}x \\ -1\end{array}\right]$. Finding x from the product is easy; since each $x_{i} \in\{0,1\}$, we know the value of α.

2 Coppersmith and Applications

Theorem 5 (Coppersmith). There is a $\operatorname{poly}(\log N, d)$-time algorithm that given $f(x) \in \mathbb{Z}[x]$, a degree d monic polynomial, outputs all x_{0} such that

- $f\left(x_{0}\right)=0 \bmod N$
- $\left|x_{0}\right|<N^{1 / d}$.

Note: this implies that there are polynomially many small roots $\bmod N$!
Example 1. Consider the polynomial $x^{3}-a=0 \bmod N$. We want to find all roots $\left|x_{0}\right|<N^{1 / 3}$. We notice that $\left|x_{0}\right|<N^{1 / 3}$ implies $x_{0}^{3}<N$. This implies $x_{0}^{3}=a$ over \mathbb{Z}. We have reduced the problem to finding cube roots over \mathbb{Z} !

Proof. So, let f be any monic polynomial over \mathbb{Z}, degree d, and $B=N^{1 / d}$. We can represent $f(x)=\sum_{i=0}^{d} f_{i} x^{i}$ (note that $f_{d}=1$). From f, we will define $h(x)=\sum h_{i} x^{i}$ so that

- All roots x_{0} of $f(x) \bmod N$ are also roots of $h(x)$.
- $\left|h_{i} B^{i}\right|<\frac{N}{d+1}$.

This implies that for every root $x_{0},\left|h\left(x_{0}\right)\right| \leq|h(B)| \leq \sum h_{i} B^{i}<N$. So, we will have reduced the problem to finding roots of h over \mathbb{Z}.

To find h, we start with a basis set of size $d+1:\left\{N, N x, \ldots, N x^{d}\right\}$. We will let our basis

$$
\mathbb{B}=\left[\begin{array}{cccccc}
N & 0 & 0 & \cdots & 0 & f_{0} \\
0 & B N & 0 & \cdots & 0 & f_{1} B \\
0 & 0 & B^{2} N & \cdots & 0 & f_{2} B^{2} \\
0 & 0 & 0 & \ddots & 0 & f_{3} B^{3} \\
\vdots & & & & & \\
0 & 0 & 0 & \cdots & B^{d-1} N & f_{d-1} B^{d-1} \\
0 & 0 & 0 & \cdots & 0 & B^{d}
\end{array}\right],
$$

where the rightmost column of \mathbb{B} are the coefficients of $f(B x)$, and the diagonal is $B^{i} N$.
If we run LLL on $\mathcal{L}(\mathbb{B})$, then we get an approximate small vector $\left(v_{0}, v_{1}, \ldots, v_{d}\right)$. We notice that each coordinate v_{i} of v is divisible by B^{i}, from our basis. Thus, we can define the integer coefficients of h as $h_{i}=v_{i} / B^{i}$. Now, by construction, for every x_{0} such that $f\left(x_{0}\right)=0 \bmod N, h\left(x_{0}\right)=0$. Finally, we need to show that $\left|h_{i} B^{i}\right|<\frac{N}{d+1}$.

Recall that LLL is a 2^{d+1} approximation, and that Minkowski's bound tells us that $\lambda_{1} \leq \sqrt{d+1} \operatorname{det}(\mathbb{B})^{1 /(d+1)}$. The magnitude of v is

$$
\|v\| \leq 2^{d+1} \sqrt{d+1} \operatorname{det}(\mathbb{B})=2^{d+1} \sqrt{d+1}\left(N^{d} \cdot B^{d(d+1) / 2}\right)^{1 / d}=2^{d+1} \sqrt{d+1} N^{d /(d+1)} B^{d / 2}=c_{d} N^{d /(d+1)} B^{d / 2}
$$

where $c_{d}=2^{d+1} \sqrt{d+1}$ is a constant only dependent on d. Also, $\frac{d}{d+1}=1-\frac{1}{d+1}$, so if we take B small enough,

$$
h_{i} B^{i}=|v| \leq\|v\| \leq c_{d} B^{d / 2} N^{1-1 /(d+1)}<\frac{N}{d+1} .
$$

We can then factor h over \mathbb{Z} to get the roots of f over \mathbb{Z}_{N}.

2.1 Factoring with a few known bits

The goal will be to break RSA in a modulus $N=p q$ when we are given half of the bits of $p, 1 / 2 \log p$ bits, in poly $(\log N)$ time. Before Coppersmith's algorithm, Rivest and Shamir were able to find p with $2 / 3 \log p$ bits.
Theorem 6. Given $N=p q, p \approx N^{\gamma}$ where $\gamma \geq 2 / 3$, and $\tilde{p}=$ half of the bits of p, we can find all of p in poly $(\log N)$ time.
Proof. Given \tilde{p}, we let $f(x)=x+\tilde{p}$. Our goal will be to find a root of $f(x) \bmod p$ without prior knowledge of p. We will define a bound $B<N^{1 / 3}$ to use in Coppersmith's algorithm. We get the following 2-dimensional basis:

$$
\mathbb{B}=\left[\begin{array}{cc}
N & \tilde{p} \\
0 & B
\end{array}\right] .
$$

In this lattice, Minkowski's bound tells us that $\lambda_{1} \leq \operatorname{det}(\mathbb{B})^{1 / 2}=\sqrt{N B}$. Running LLL on \mathbb{B} gives us a small vector $v=\left[\begin{array}{c}h_{0} \\ B h_{1}\end{array}\right]$. Since LLL finds a 2^{d}-approximate small vector (and $d=2$), $\|v\| \leq 2 \sqrt{N B}$. We wanted to define B so that the LLL approximation gives us a small enough vector. So, we need $\|v\|<p \approx N^{2 / 3}$, meaning $2 \sqrt{N B}<N^{2 / 3}$. If we let $B<N^{1 / 3}$, this inequality holds.

So, for any $x_{0}<B$ in $\mathbb{Z}, h\left(x_{0}\right)=h_{0}+h_{1} x_{0} \leq\|v\| \leq 2 \sqrt{N B}$. Now, consider $x_{0}<B$ an integral root of h. Since $B<p, x_{0}$ is a root of $h \bmod p$. $\left|x_{0}\right|<\tilde{p}$, so $f\left(x_{0}\right)=x_{0}+\tilde{p} \equiv 0 \bmod p, \operatorname{meaning} \operatorname{gcd}\left(f\left(x_{0}\right), N\right)=p$. We have found the rest of the bits of p !

2.2 Attacks on padding in low exponent RSA

Recall how RSA works. A modulus $N=p q$ (usually on the order of 2000 bits) and a public key e are public. The decryption key, $d=e^{-1} \bmod \phi(N)$, is private. For Alice to send a message M to Bob, she computes $C=f(M)=M^{e} \bmod N$. Bob, with his private key, can decrypt $C: C^{d}=M^{e d} \bmod N=M \bmod N$.

Notice that this is a deterministic scheme, so an attacker can guess at what message is being sent and check by encrypting his guess against the original message.

A common defense against this kind of attack is to pad the message with random bits. So, for a message $M \in\{0,1\}^{n}$, we encrypt by finding a random $r \in\{0,1\}^{m}$ and letting our ciphertext $C=f(M \| r)$. Mathematically, we are taking $M, r \in \mathbb{Z}_{N}$, and letting $M^{\prime}=2^{m} M+r$. We will soon show how this kind of padding offers no security.

Lemma 7. Let $e=3$ and $\ell(x)=a x+b$ for $a, b \neq 0$. Given the RSA public parameters e, N and two ciphertexts $C_{1}, C_{2} \in \mathbb{Z}_{N}^{*}$, where $C_{1}=f\left(M_{1}\right)$ and $C_{2}=f\left(M_{2}^{e}\right)$ for messages M_{1}, M_{2} so that $M_{1}=\ell\left(M_{2}\right)$, we can find both M_{1} and M_{2} efficiently.

Proof. Let $g_{1}(x)=\ell(x)^{e}-C_{1}$ and $g_{2}(x)=x^{e}-C_{2}$. Notice that M_{2} is a root of both g_{1} and g_{2}. If we can prove that $\left(x-M_{2}\right)$ is the gcd of g_{1} and g_{2}, then we can easily compute $\left(x-M_{2}\right)$ using the Euclidean algorithm on g_{1} and g_{2}.

Recall that RSA is a bijection, so there is only one root in \mathbb{Z}_{N} of g_{2}, and that root is M_{2}. So, $g_{2}(x)=$ $\left(x-M_{2}\right) g^{\prime}(x)$ where g^{\prime} is a quadratic irreducible in \mathbb{Z}_{N}. So, $\operatorname{gcd}\left(g_{1}, g_{2}\right)=\left(x-M_{2}\right)$ or g_{2}. However, since $b \neq 0, M_{1} \neq M_{2}$, so $g_{2} \nmid g_{1}$. Therefore $\operatorname{gcd}\left(g_{1}, g_{2}\right)=\left(x-M_{2}\right)$.

Theorem 8. Let $N \approx 2^{n}$ be an RSA modulus, $e=3$, and the padding length $m \leq\left\lfloor n / e^{2}\right\rfloor$. Given $C_{1}=f\left(M \| r_{1}\right)$ and $C_{2}=f\left(M \| r_{2}\right)$, where $r_{1} \neq r_{2}$, we can recover M efficiently.

Proof. Let's define $M_{1}=2^{m} M+r_{1}$ and $M_{2}=2^{m} M+r_{2}$. Our goal will be to determine M and r_{1} and r_{2}. So, let's let x be our unknown message and y be our unknown padding. Based on these variables, we define

$$
\begin{array}{ll}
g_{1}(x, y)=x^{e}-C_{1} & =x^{e}-M_{1}^{e} \\
g_{2}(x, y)=(x+y)^{e}-C_{2}=(x+y)^{e}-M_{2}^{e} . &
\end{array}
$$

Since RSA is a bijection, g_{1} implies that $x=M_{2}$. Given that $x=M, g_{2}$ implies that $y=r_{2}-r_{1}$.
Next, we want to consider the resultant of g_{1} and g_{2}. The resultant on two polynomials $p(x)$ and $q(x)$ is defined as

$$
\operatorname{res}_{x}(p(x), q(x))=\prod_{p\left(x_{1}\right)=q\left(x_{2}\right)=0}\left(x_{1}-x_{2}\right)
$$

There are a couple of things we can note about the resultant:

- If p and q share a root, then $\operatorname{res}_{x}(p(x), q(x))=0$.
- $\operatorname{res}_{x}(p, q)$ is also the determinant of the Sylvester matrix of p and $q, S_{p, q}$. Therefore, it can be computed efficiently.

We will want to solve for y first, so we compute the resultant of g_{1} and g_{2} based on the x-coefficients of y. Notice that $g_{1}(x, y)$ is degree 0 with respect to y and that $g_{2}(x, y)$ is degree $e=3$, so $\operatorname{res}_{x}\left(g_{1}, g_{2}\right)$ has degree at most e^{2} in y.

Let $h(y)=\operatorname{res}_{x}\left(g_{1}, g_{2}\right)$. Notice that $\Delta=r_{2}-r_{1}$ is a root of h, since setting y to Δ makes M_{1} a root of both g_{1} and g_{2}. We also have that Δ is small; $|\Delta|<2^{m}<N^{1 / e^{2}}$. So, we can run Coppersmith's root-finding algorithm to get a polynomial list of candidate $\Delta \mathrm{s}$.

For each candidate Δ, we let $\ell=x-\Delta$ and use the algorithm in lemma 7 , revealing candidates M_{1} and M_{2}. We check if we are successful by re-encrypting them to see if they are equal to C_{1} and C_{2}.

References

[1] Chris Piekert, Lattices in Cryptography Lecture 3: LLL, Coppersmith, University of Michigan, 2015, http://web.eecs.umich.edu/ cpeikert/lic15/lec03.pdf.
[2] Chris Piekert, Lattices in Cryptography Lecture 4: Coppersmith, Cryptanalysis, University of Michigan, 2015, http://web.eecs.umich.edu/ cpeikert/lic15/lec04.pdf.

