
6.876 Advanced Topics in Cryptography: Lattices September 23, 2015

Lecture 5
Lecturer: Vinod Vaikuntanathan Scribe: Rio LaVigne

This lecture covers:

• Solving low-density subset sum with LLL.

• Coppersmith’s Theorem: finding small roots of polynomials.

• Factoring an RSA modulus knowing a few higher order bits of one of the factors using Coppersmith.

1 Solving Low-density Subset Sum

Definition 1. Subset sum (SSUM) is the following problem: given a1, . . . , an ∈ [0, X] and s =
∑
aixi where

each xi ∈ {0, 1}, find ~x = (x1, . . . , xn).

Definition 2. The density of a subset sum problem is defined as n
logX ; the ratio between the number of

elements in your sum to the number of bits in the range of a′is.

Low density means n
logX is very small, for example 1

n2 where X = 2n
2

.

Theorem 3 (Frieze). Let X = 2Ω(n2). There is an average-case polytime algorithm for SSUM.

Proof. We are given a1, · · · , an ∈ [0, X], and the sum s =
n∑
i=1

aixi, where each xi ∈ {0, 1}. First, we are

going to phrase this as an SVP in a lattice. We define a lattice

La1,...,an,s =


 I


0
0
...
0

a1 a2 . . . an s


in n+ 1 dimensions. Notice that if we make a column vector of the xi, we get


1 0 . . . 0
0 1 . . . 0
...

. . .

0 0 . . . 1


0
0
...
0

a1 a2 . . . an s



x1

...
xn
−1

 =


x1

...
xn
0

 ,

and only a solution to the subset sum problem will have this property. So, a SSUM solution is a lattice
vector of length

√
n such that

L ·
[
x
−1

]
=

[
x
0

]
.

We want to guarantee that the only small solutions are of the form αx – it is easy to find α if we know x, so
we will scale each ai and the sum s in the basis by some large β = 2Ω(n). The problem then becomes finding

5-1

a vector z of dimension n+ 1 such that
 I


0
0
...
0

a1 a2 . . . an s




z1

vdots
zn
zn+1

 =


z1

vdots
zn
0

 .

Claim 4. With high probability, the only small solutions are α ·
[
x
−1

]
.

Proof. We start with
∑n
i=1 βaizi + βzn+1s = 0, and we can divide out by β to get

n∑
i=1

aizi + zn+1s = 0.

We also have that
∑n
i=1 aixi − s = 0 from the original solution. For i = 1, · · · , n, let yi = xi − zi and

yn+1 = zn+1 − 1. Subtracting one from the other, we have

n∑
i=1

ai(xi − zi)− (zn+1 − 1)s =

n∑
i=1

aiyi − yn+1s = 0.

Now, notice two things

1. First, fix the yi, and we have Prai [
∑
aiyi − yn+1s = 0] = 1

X .

2. Now, we note that the number of possible yi’s is small, 2O(n2), based on the approximation LLL
outputs.

So,

Pr[
∑

aiyi − yn+1s = 0for some y 6= 0] =
1

X
· 2O(n2).

Since X = 2Ωn2

, 1
X · 2

O(n2).

We can run the LLL algorithm for approximating the shortest vector. The output vector, z, is guaranteed
to be a 2O(n)-approximate shortest vector. From the claim, we know that z, with high probability, is of the

form α

[
x
−1

]
. Finding x from the product is easy; since each xi ∈ {0, 1}, we know the value of α.

2 Coppersmith and Applications

Theorem 5 (Coppersmith). There is a poly(logN, d)-time algorithm that given f(x) ∈ Z[x], a degree d
monic polynomial, outputs all x0 such that

• f(x0) = 0 mod N

• |x0| < N1/d.

Note: this implies that there are polynomially many small roots mod N !

Example 1. Consider the polynomial x3−a = 0 mod N . We want to find all roots |x0| < N1/3. We notice
that |x0| < N1/3 implies x3

0 < N . This implies x3
0 = a over Z. We have reduced the problem to finding cube

roots over Z!

Proof. So, let f be any monic polynomial over Z, degree d, and B = N1/d. We can represent f(x) =
d∑
i=0

fix
i

(note that fd = 1). From f , we will define h(x) =
∑
hix

i so that

5-2

• All roots x0 of f(x) mod N are also roots of h(x).

• |hiBi| < N
d+1 .

This implies that for every root x0, |h(x0)| ≤ |h(B)| ≤
∑
hiB

i < N . So, we will have reduced the problem
to finding roots of h over Z.

To find h, we start with a basis set of size d+ 1: {N,Nx, . . . , Nxd}. We will let our basis

B =



N 0 0 . . . 0 f0

0 BN 0 . . . 0 f1B
0 0 B2N . . . 0 f2B

2

0 0 0
. . . 0 f3B

3

...
0 0 0 . . . Bd−1N fd−1B

d−1

0 0 0 . . . 0 Bd


,

where the rightmost column of B are the coefficients of f(Bx), and the diagonal is BiN .
If we run LLL on L(B), then we get an approximate small vector (v0, v1, . . . , vd). We notice that each

coordinate vi of v is divisible by Bi, from our basis. Thus, we can define the integer coefficients of h as
hi = vi/B

i. Now, by construction, for every x0 such that f(x0) = 0 mod N , h(x0) = 0. Finally, we need to
show that |hiBi| < N

d+1 .

Recall that LLL is a 2d+1 approximation, and that Minkowski’s bound tells us that λ1 ≤
√
d+ 1 det(B)1/(d+1).

The magnitude of v is

||v|| ≤ 2d+1
√
d+ 1 det(B) = 2d+1

√
d+ 1(Nd ·Bd(d+1)/2)1/d = 2d+1

√
d+ 1Nd/(d+1)Bd/2 = cdN

d/(d+1)Bd/2

where cd = 2d+1
√
d+ 1 is a constant only dependent on d. Also, d

d+1 = 1 − 1
d+1 , so if we take B small

enough,

hiB
i = |v| ≤ ||v|| ≤ cdBd/2N1−1/(d+1) <

N

d+ 1
.

We can then factor h over Z to get the roots of f over ZN .

2.1 Factoring with a few known bits

The goal will be to break RSA in a modulus N = pq when we are given half of the bits of p, 1/2 log p bits,
in poly(logN) time. Before Coppersmith’s algorithm, Rivest and Shamir were able to find p with 2/3 log p
bits.

Theorem 6. Given N = pq, p ≈ Nγ where γ ≥ 2/3, and p̃ = half of the bits of p, we can find all of p in
poly(logN) time.

Proof. Given p̃, we let f(x) = x+p̃. Our goal will be to find a root of f(x) mod p without prior knowledge of
p. We will define a bound B < N1/3 to use in Coppersmith’s algorithm. We get the following 2-dimensional
basis:

B =

[
N p̃
0 B

]
.

In this lattice, Minkowski’s bound tells us that λ1 ≤ det(B)1/2 =
√
NB. Running LLL on B gives us a small

vector v =

[
h0

Bh1

]
. Since LLL finds a 2d-approximate small vector (and d = 2), ||v|| ≤ 2

√
NB. We wanted

to define B so that the LLL approximation gives us a small enough vector. So, we need ||v|| < p ≈ N2/3,
meaning 2

√
NB < N2/3. If we let B < N1/3, this inequality holds.

So, for any x0 < B in Z, h(x0) = h0 +h1x0 ≤ ||v|| ≤ 2
√
NB. Now, consider x0 < B an integral root of h.

Since B < p, x0 is a root of h mod p. |x0| < p̃, so f(x0) = x0 + p̃ ≡ 0 mod p, meaning gcd(f(x0), N) = p.
We have found the rest of the bits of p!

5-3

2.2 Attacks on padding in low exponent RSA

Recall how RSA works. A modulus N = pq (usually on the order of 2000 bits) and a public key e are public.
The decryption key, d = e−1 mod φ(N), is private. For Alice to send a message M to Bob, she computes
C = f(M) = Me mod N . Bob, with his private key, can decrypt C: Cd = Med mod N = M mod N .

Notice that this is a deterministic scheme, so an attacker can guess at what message is being sent and
check by encrypting his guess against the original message.

A common defense against this kind of attack is to pad the message with random bits. So, for a
message M ∈ {0, 1}n, we encrypt by finding a random r ∈ {0, 1}m and letting our ciphertext C = f(M ||r).
Mathematically, we are taking M, r ∈ ZN , and letting M ′ = 2mM + r. We will soon show how this kind of
padding offers no security.

Lemma 7. Let e = 3 and `(x) = ax + b for a, b 6= 0. Given the RSA public parameters e,N and two
ciphertexts C1, C2 ∈ Z∗N , where C1 = f(M1) and C2 = f(Me

2) for messages M1,M2 so that M1 = `(M2), we
can find both M1 and M2 efficiently.

Proof. Let g1(x) = `(x)e − C1 and g2(x) = xe − C2. Notice that M2 is a root of both g1 and g2. If we
can prove that (x−M2) is the gcd of g1 and g2, then we can easily compute (x−M2) using the Euclidean
algorithm on g1 and g2.

Recall that RSA is a bijection, so there is only one root in ZN of g2, and that root is M2. So, g2(x) =
(x −M2)g′(x) where g′ is a quadratic irreducible in ZN . So, gcd(g1, g2) = (x −M2) or g2. However, since
b 6= 0, M1 6= M2, so g2 - g1. Therefore gcd(g1, g2) = (x−M2).

Theorem 8. Let N ≈ 2n be an RSA modulus, e = 3, and the padding length m ≤ bn/e2c. Given
C1 = f(M ||r1) and C2 = f(M ||r2), where r1 6= r2, we can recover M efficiently.

Proof. Let’s define M1 = 2mM + r1 and M2 = 2mM + r2. Our goal will be to determine M and r1 and r2.
So, let’s let x be our unknown message and y be our unknown padding. Based on these variables, we define

g1(x, y) = xe − C1 = xe −Me
1

g2(x, y) = (x+ y)e − C2 = (x+ y)e −Me
2 .

Since RSA is a bijection, g1 implies that x = M2. Given that x = M , g2 implies that y = r2 − r1.
Next, we want to consider the resultant of g1 and g2. The resultant on two polynomials p(x) and q(x) is

defined as
resx(p(x), q(x)) =

∏
p(x1)=q(x2)=0

(x1 − x2).

There are a couple of things we can note about the resultant:

• If p and q share a root, then resx(p(x), q(x)) = 0.

• resx(p, q) is also the determinant of the Sylvester matrix of p and q, Sp,q. Therefore, it can be computed
efficiently.

We will want to solve for y first, so we compute the resultant of g1 and g2 based on the x-coefficients of y.
Notice that g1(x, y) is degree 0 with respect to y and that g2(x, y) is degree e = 3, so resx(g1, g2) has degree
at most e2 in y.

Let h(y) = resx(g1, g2). Notice that ∆ = r2 − r1 is a root of h, since setting y to ∆ makes M1 a root of

both g1 and g2. We also have that ∆ is small; |∆| < 2m < N1/e2 . So, we can run Coppersmith’s root-finding
algorithm to get a polynomial list of candidate ∆s.

For each candidate ∆, we let ` = x−∆ and use the algorithm in lemma 7, revealing candidates M1 and
M2. We check if we are successful by re-encrypting them to see if they are equal to C1 and C2.

5-4

References

[1] Chris Piekert, Lattices in Cryptography Lecture 3: LLL, Coppersmith, University of Michigan, 2015,
http://web.eecs.umich.edu/ cpeikert/lic15/lec03.pdf.

[2] Chris Piekert, Lattices in Cryptography Lecture 4: Coppersmith, Cryptanalysis, University of Michigan,
2015, http://web.eecs.umich.edu/ cpeikert/lic15/lec04.pdf.

5-5

	Solving Low-density Subset Sum
	Coppersmith and Applications
	Factoring with a few known bits
	Attacks on padding in low exponent RSA

