6.876 Advanced Topics in Cryptography: Lattices September 23, 2015

Lecture 5

Lecturer: Vinod Vaikuntanathan Scribe: Rio LaVigne

This lecture covers:
e Solving low-density subset sum with LLL.
e Coppersmith’s Theorem: finding small roots of polynomials.

e Factoring an RSA modulus knowing a few higher order bits of one of the factors using Coppersmith.

1 Solving Low-density Subset Sum

Definition 1. Subset sum (SSUM) is the following problem: given a4, ...,a, € [0, X] and s = >_ a;x; where
each z; € {0,1}, find @ = (z1,...,2y).

Definition 2. The density of a subset sum problem is defined as @; the ratio between the number of

elements in your sum to the number of bits in the range of als.

. . 2
Low density means —2~ is very small, for example - where X = 2" .
log X ’

n2

Theorem 3 (Frieze). Let X = 29("*) | There is an average-case polytime algorithm for SSUM.

n
Proof. We are given ay,--- ,a, € [0,X], and the sum s = > a;z;, where each x; € {0,1}. First, we are
i=1

going to phrase this as an SVP in a lattice. We define a lattice

£a1,..-,an,7s = :
0

a; a2 ... Qp S

in n 4+ 1 dimensions. Notice that if we make a column vector of the z;, we get

1 0 0] o . .
0 1 ol o 1 !
T T
0 0 IV I 0
ay asg e Qp

and only a solution to the subset sum problem will have this property. So, a SSUM solution is a lattice
vector of length v/n such that
x T
e5)-[i)

We want to guarantee that the only small solutions are of the form ax — it is easy to find « if we know x, so
we will scale each a; and the sum s in the basis by some large 5 = 2%("). The problem then becomes finding

5-1

a vector z of dimension n + 1 such that

I 0 zZ1 Z1
. vdots| _ |vdots
. Zn Zn
0 Zn+1 0
ay a2 ... Qp S

Claim 4. With high probability, the only small solutions are « - {_xl] .

n
Proof. We start with Z?:l Baiz; + fzny1s = 0, and we can divide out by 5 to get > a;z; + zp418 = 0.
i=1
We also have that 2?21 a;x; — s = 0 from the original solution. For ¢ = 1,--- ,n, let y; = x; — z; and
Yn+1 = Zn+1 — 1. Subtracting one from the other, we have

n n
Zai(:ci —z) = (Zpp1 — 1)s = Zaiyi — Yny15 = 0.
i=1

i=1
Now, notice two things

1. First, fix the y;, and we have Pry,[>" a;y; — ynt15 =0] = %

2. Now, we note that the number of possible y;’s is small, 20(”2), based on the approximation LLL
outputs.

So,
1
Pr[z a;Y; — Ynt15 = Ofor some y # 0] = e . 90(n?).
Since X = 297" 1 .90(n?) -

We can run the LLL algorithm for approximating the shortest vector. The output vector, z, is guaranteed
to be a 2°(™_approximate shortest vector. From the claim, we know that z, with high probability, is of the

form « [IJ . Finding = from the product is easy; since each z; € {0,1}, we know the value of a. O]

2 Coppersmith and Applications

Theorem 5 (Coppersmith). There is a poly(log NV, d)-time algorithm that given f(z) € Z[z], a degree d
monic polynomial, outputs all xy such that

o f(z9) =0 mod N
o |zo| < N4,
Note: this implies that there are polynomially many small roots mod N'!

Example 1. Consider the polynomial 22 —a =0 mod N. We want to find all roots |z| < N1/3. We notice
that |zg| < N1/3 implies x3 < N. This implies 23 = a over Z. We have reduced the problem to finding cube
roots over Z!

d
Proof. So, let f be any monic polynomial over Z, degree d, and B = N'/¢. We can represent f(z) = 3. fix

i=0
(note that f; = 1). From f, we will define h(x) = 3 h;z* so that

i

5-2

e All roots xg of f(z) mod N are also roots of h(z).

o |hiB| < A5

This implies that for every root zo, |h(zo)| < |h(B)| < 3. h;B* < N. So, we will have reduced the problem
to finding roots of h over Z.
To find h, we start with a basis set of size d 4+ 1: {N, Nx,..., Nz%}. We will let our basis

N 0 0o ... 0 o

0 BN 0 ... 0 #1B

0 0 B3N ... 0 f2BB2
B=|0 0 0 0 B3|,

0 0 0 ... B&FIN f, Bi!

0 0 0o ... 0 B

where the rightmost column of B are the coefficients of f(Bx), and the diagonal is B N.

If we run LLL on £(B), then we get an approximate small vector (vg,v1,...,vq4). We notice that each
coordinate v; of v is divisible by B?, from our basis. Thus, we can define the integer coefficients of h as
h; = v;/ B*. Now, by construction, for every xy such that f(xzo) =0 mod N, h(x) = 0. Finally, we need to
show that |h; BY| < %.

Recall that LLL is a 29! approximation, and that Minkowski’s bound tells us that A\; < v/d + 1 det(B)l/(d“).

The magnitude of v is
llo]] < 29+1Vd + 1 det(B) = 291/ + L(NV¢ - BUd+D/2\1/d _ 9d+1, [7 T Nd/(d+1) d/2 _ o N/ (d+D) gd/2

where ¢q = 29t1\/d + 1 is a constant only dependent on d. Also, -4 = 1 — ﬁ, so if we take B small

’ d+1
enough, N
hiB' = [o] < [ol] < eaBYPNHD < o,

We can then factor h over Z to get the roots of f over Zy. O

2.1 Factoring with a few known bits

The goal will be to break RSA in a modulus N = pg when we are given half of the bits of p, 1/2logp bits,
in poly(log N) time. Before Coppersmith’s algorithm, Rivest and Shamir were able to find p with 2/3logp
bits.

Theorem 6. Given N = pq, p =~ N7 where v > 2/3, and p = half of the bits of p, we can find all of p in
poly(log N) time.

Proof. Given p, we let f(x) = x+p. Our goal will be to find a root of f(z) mod p without prior knowledge of
p. We will define a bound B < N'/3 to use in Coppersmith’s algorithm. We get the following 2-dimensional

basis:
_|N P
IB%[O B}

In this lattice, Minkowski’s bound tells us that A\; < det(B)'/? = /NB. Running LLL on B gives us a small

vector v = [} Since LLL finds a 2%-approximate small vector (and d = 2), ||v|| < 2v/NB. We wanted

0
Bhy
to define B so that the LLL approximation gives us a small enough vector. So, we need ||v]| < p ~ N?/3,
meaning 2/ NB < N2/3. If we let B < N'/3, this inequality holds.

So, for any xg < B in Z, h(z¢) = ho+hizo < ||v|] < 2V NB. Now, consider zy < B an integral root of h.
Since B < p, x¢ is a root of h mod p. |zo| < P, so f(zo) = zo+p =0 mod p, meaning ged(f(zg), N) = p.
We have found the rest of the bits of p! O

5-3

2.2 Attacks on padding in low exponent RSA

Recall how RSA works. A modulus N = pq (usually on the order of 2000 bits) and a public key e are public.
The decryption key, d = e=! mod ¢(N), is private. For Alice to send a message M to Bob, she computes
C = f(M) = M¢ mod N. Bob, with his private key, can decrypt C: C¢ = M’ mod N = M mod N.

Notice that this is a deterministic scheme, so an attacker can guess at what message is being sent and
check by encrypting his guess against the original message.

A common defense against this kind of attack is to pad the message with random bits. So, for a
message M € {0,1}", we encrypt by finding a random r € {0,1}™ and letting our ciphertext C = f(M||r).
Mathematically, we are taking M, r € Zy, and letting M’ = 2™ M + r. We will soon show how this kind of
padding offers no security.

Lemma 7. Let e = 3 and ¢(z) = ax + b for a,b # 0. Given the RSA public parameters e, N and two
ciphertexts Cy,Cy € ZY, where C1 = f(M;) and Cy = f(M§) for messages My, My so that My = £(My), we
can find both M; and M; efficiently.

Proof. Let g1(z) = £(x)¢ — Cy and ga(x) = x¢ — Cy. Notice that My is a root of both g1 and go. If we
can prove that (z — Ms) is the ged of g1 and go, then we can easily compute (z — M) using the Euclidean
algorithm on g; and gs.

Recall that RSA is a bijection, so there is only one root in Zy of go, and that root is Ms. So, ga(x) =
(x — Ms)g' () where ¢’ is a quadratic irreducible in Zy. So, ged(g1,92) = (x — Ma) or go. However, since
b# 0, My # Ms, so g2 1g1. Therefore ged(g1,92) = (v — Ma). O

Theorem 8. Let N ~ 2" be an RSA modulus, e = 3, and the padding length m < |n/e?|. Given
Cy = f(M||r1) and Cy = f(M]|r2), where r1 # rq, we can recover M efficiently.

Proof. Let’s define My = 2™ M + r1 and My = 2™ M + ro. Our goal will be to determine M and r; and 7.
So, let’s let be our unknown message and y be our unknown padding. Based on these variables, we define

g1(z,y) =2 = Ch =2°— My
g2(z,y) = (x+y)* —Co = (x+y)" — M.

Since RSA is a bijection, g; implies that x = Ms. Given that x = M, go implies that y = ro — ry.
Next, we want to consider the resultant of g1 and go. The resultant on two polynomials p(x) and ¢(z) is

defined as
res; (p(x),q(x)) = H (1 — x2).
p(z1)=q(z2)=0

There are a couple of things we can note about the resultant:
e If p and ¢ share a root, then res,(p(z),¢(z)) = 0.

e res;(p, q) is also the determinant of the Sylvester matrix of p and ¢, S, ;. Therefore, it can be computed
efficiently.

We will want to solve for y first, so we compute the resultant of g; and go based on the z-coefficients of .
Notice that g;(x,y) is degree 0 with respect to y and that go(x,y) is degree e = 3, so res, (g1, g2) has degree
at most €2 in y.

Let h(y) = res;(g1,92). Notice that A = ro — 71 is a root of h, since setting y to A makes M; a root of
both g; and go. We also have that A is small; |A| < 2™ < N/ ¢ So, we can run Coppersmith’s root-finding
algorithm to get a polynomial list of candidate As.

For each candidate A, we let £ = x — A and use the algorithm in lemma 7, revealing candidates M; and
M. We check if we are successful by re-encrypting them to see if they are equal to Cy and Cs. O

5-4

References

[1] Chris Piekert, Lattices in Cryptography Lecture 3: LLL, Coppersmith, University of Michigan, 2015,
http://web.eecs.umich.edu/ cpeikert/lic15/lec03.pdf.

[2] Chris Piekert, Lattices in Cryptography Lecture 4: Coppersmith, Cryptanalysis, University of Michigan,
2015, http://web.eecs.umich.edu/ cpeikert/lic15/lec04.pdf.

5-5

	Solving Low-density Subset Sum
	Coppersmith and Applications
	Factoring with a few known bits
	Attacks on padding in low exponent RSA

