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Lecture 2
Lecturer: Vinod Vaikuntanathan Scribe: Sergey Gorbunov

1 Lecture Outline

• Alternative Definition of Lattices

• Upper bound on the length of a shortest lattice vector ()

• Successive Minima

• Applications of Minkowski’s Theorem

2 Alternative Definition of Lattices

Last lecture we saw the following definition of a lattice:

Definition 1 (Lattices). Given n linearly independent vectors b1, . . . ,bn ∈ Rm, the lattice generated by
them is defined as

(b1, . . . ,bn)
def
=

{ n∑
i=1

xibi | xi ∈ Z
}

Now, consider the following set S:

S = {(x1, . . . ,xn) ∈:

n∑
i=1

xi is even}

A typical question may ask whether S is a lattice. From the Definition 1, we know that if we are able to
find a set of linearly independent vectors b1, . . . ,bn ∈ such that for all s ∈ S, s = a1b1 + . . . + anbn for
some integer coefficients a1, . . . , an, then S is indeed a lattice. We will now give a new definition of a lattice
that gives us a simpler way of verifying that S is a lattice.

Definition 2. A lattice is a discrete additive subgroup of .

In the above definition, by discrete we mean that:

∃ε > 0, s.t. ∀x 6= y ∈, ||x− y|| ≥ ε.

And by additive subgroup we mean that:

∀x,y ∈,x− y ∈ .

Claim 3. Definition 1 is equivalent to Definition 2.

Proof. We will first show that Definition 1 =⇒ Definition 2.
Assume is a lattice defined as the set of all integer combinations of vectors b1, . . . ,bn ∈ which are

linearly independent (Definition 1). Then, clearly is an additive subgroup of . In addition, ∀x,y ∈, x−y ∈.
Therefore, from the lower bound on a shortest lattice vector,

||x− y|| ≥ λ1() ≥ min
i=1,...,n

||b̃i||.
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In other words, the length of any lattice vector must be greater than the length of a shortest lattice vector.
Therefore, we can let ε = λ1. So, both properties of Definition 2 are satisfied ( is a discrete additive subgroup
of ).

We show that Definition 2 =⇒ Definition 1. Given a discrete additive subgroup of , we construct a set
of basis using the algorithm below.

We will use the following definition of a closed parallelepiped.

Definition 4 (Closed Fundamental Parallelepiped). Given n linearly independent vectors b1, . . . ,bn ∈ Rm,
their closed fundamental parallelepiped is defined as

(b1, . . . ,bn)
def
=

{ n∑
i=1

xibi | xi ∈ R, 0 ≤ xi ≤ 1

}
Pick y ∈ such that there is no lattice vector between the zero vector and y. Let b1 = y.

Iterate for all i, 1 ≤ i < n: Assume we have already chosen b1, . . . ,bi. Choose y not in the (b1, . . . ,bi).
Consider a (b1, . . . ,bi,y) (See Figure-1 for an example).

Now, contains at least one lattice point (namely y) and it contains finitely many lattice points. Now, choose
a vector ∈ (b1, . . . ,bi,y) \ (b1, . . . ,bi) such that

dist(, (b1, . . . ,bi)) is the smallest.

Note, that we can do this since we have only finitely many points to choose from. Let bi+1 =.

We will now show that the above algorithm returns a basis b1, . . .bn ∈ for the lattice. Clearly all bis ∈
and they are linearly independent by the algorithm that we used. We are left to show that

⊆ {Σxibi : xi ∈ Z}.

Let = Σzibi be an arbitrary lattice vector (where zi ∈ R). Let = Σbzicbi ∈. Then, − = Σ(zi−bzic)bi ∈.
We will show that all coefficients zi must be integers. Express

− = (zn − bznc)bn + (b1, . . . ,bn−1) = (zn − bznc)b̃n + (b1, . . . ,bn−1)

In other words, vector − is in the (b1, . . . ,bn−1) plus a multiple of b̃n with coefficients 0 ≤ bznc < 1.
Now,

dist(−, (b1, . . . ,bn−1)) = (zn − bznc)||b̃n||

This follows because the distance is defined as the orthogonal component of − to the span (b1, . . . ,bn−1),
which is precisely (zn − bznc)||b̃n||. Similarly,

dist(bn, (b1, . . . ,bn−1)) = ||b̃n||

In addition, since 0 ≤ (zn − bznc) < 1,

dist(−, (b1, . . . ,bn−1)) < dist(bn, (b1, . . . ,bn−1))

But since bn was chosen as the closest vector to (b1, . . . ,bn−1), −must be linearly dependent of b1, . . . ,bn−1.
Therefore, zn − bznc = 0 and so zn ∈ Z. By recursively repeating the above argument for = −zibi ∈
(b1, . . . ,bi−1) for all 1 < i ≤ n we obtain that all coefficients zj for 1 ≤ j ≤ n must be integers.
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Figure 1: Constructing lattice basis from a discrete additive subgroup of . After the first iteration if we
choose y = (1, 3), then in the (b1,y) we choose = b2 which is at the minimum distance from (b1). We can
see that there are no non-zero lattice vectors in (b1,b2). Therefore, {b1,b2} forms a basis for this lattice.

3 Upper bound on a shortest lattice vector

Last time we saw how to compute a lower bound on the length of a shortest lattice vector. In particular, we
saw that

≥ min
i=1,...,n

||b̃||

Now, we will compute an upper bound on .

Before we state the theorem, we give some intuition on what a shortest lattice vector might depend on.
Recall, that the determinant of a lattice is an inverse of its density. So larger determinant implies less dense
lattice, while smaller determinant implies denser lattice. Therefore, we should be able to express an upper
bound for in terms of the determinant of a lattice. But we know that ≤ det(). We will now prove a stronger
bound. In addition, our expression should scale well. In particular, if is an arbitrary lattice with a shortest
vector of length , then lattice defined by scaling every vector in by k should have a shortest vector of length
k. Similarly, det(c) = cn should satisfy. One can check that Minkowski’s first theorem holds well on these
properties.

Theorem 5 (Minkowski’s First Theorem). For every full rank lattice :

≤
√
n ∗ det()1/n.

In order to prove the theorem, we will need to use the following 2 theorems.

Theorem 6 (Blichfeld). For all full rank lattice and measurable set S ⊆ s.t. vol(S) > det(),

∃x,y ∈ S, s.t. x− y ∈ .

See Figure-2 for an example.
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Figure 2: By the Blichfeld’s theorem we can find x and y in this set such that x− y ∈.

Proof. Let B be a basis for the lattice . Define f :→ (B) as follows: f(Σxibi) = Σ(xi − bxic)bi. First, note
that Σxibi − f(Σxibi) = Σbxicbi ∈. Now consider the following 2 cases:

Case 1: If ∃x,y ∈ S s.t. f(x) = f(y) (i.e. we have a collision from two vectors). Then, x − y =
(x− f(x))− (y − f(y)). But as noted above, x− f(x) ∈ and y − f(y) ∈. Therefore, x− y ∈.

Case 2: Assume there are no collisions. Let S =
⋃

x∈ Sx. Define S̃x = Sx − x. By definition, S̃x ⊆ (B).

Also, vol(S) = Σvol(Sx) and vol(S̃x) = vol(Sx). Therefore, vol(S) = Σvol(Sx) = Σvol(S̃x). But since we
assume that we do not have any collisions, then for all x,y, S̃x

⋂
S̃y = ∅. And so,

vol(S) = Σvol(S̃x) = vol(
⋃
x∈
S̃x) ≤ vol((B)) = det()

Therefore, vol(S) ≤ det() which contradicts with our assumption.

Definition 7 (Convex Set). A set S is convex if:

∀x 6= y ∈ S, ∀α ∈ [0, 1], αx+ (1− α)y ∈ S.

Informally, the above definition say that if we take any two points from the set, any point that lies on
the straight line between the two points must also be in the set.

Definition 8 (Centrally Symmetric Set). A set S is centrally symmetric if:

∀x ∈ S,−x ∈ S.

Theorem 9 (Minkowski’s Convex Body Theorem). For all full-rank lattice , and a convex centrally sym-
metric set S with vol(S) > 2ndet(), S contains a non-zero lattice point.
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Proof. Let S̃ = {x/2 : x ∈ S}. Then,

vol(S̃) = 2−nvol(S) > det()

Therefore, by the Blichfeld’s theorem ∃x,y ∈ S̃ s.t. x−y ∈. We will show that x−y ∈ S. Now, 2x ∈ S
and 2y ∈ S by the construction of S̃. Therefore, −2y ∈ S. And x− y = 2x−2y

2 ∈ S.

We are now ready to prove Minkowski’s first theorem (Theorem 1).

Proof. (Minkowski’s first theorem) Let S = B(0, ), where B(x, r) is an n-dimensional open ball of radius r
centred at x.
Note that using l2 norm this n-dimensional ball contains an n-dimensional cube of length 2r√

n
. Therefore,

vol(B(0, r)) ≥ (
2r√
n

)n.

Therefore, we get vol(B(0, )) ≥ ( 2√
n

)n. But from Minkowski’s convex body theorem and the fact that

the ball is open and hence contains no non-zero lattice points, we get

(
2√
n

)n ≤ vol(B(0, ) ≤ 2ndet().

Rearranging,
≤
√
n ∗ det()1/n.

4 Successive Minima

Given a lattice, it is natural to ask questions such as: What is a shortest vector in the lattice? What is a
second shortest vector in the lattice? In general, what is the length of the ith shortest vector in the lattice?
As we saw from the last lecture, the length of a shortest lattice vector is defined as . We now extend this
definition:

Definition 10 (Successive Minima). Let be an arbitrary lattice of rank n. Then ∀i, 1 ≤ i ≤ n:

def
= inf{r : B(0, r) contains ≥ i linearly independent lattice vectors}

Following the above the definition and the lattice described in Figure-3, we can see that = ||x1|| and
= ||x3||, since neither x2 nor 2x1 are linearly independent of x1.

We saw that Minkowski’s first theorem gives us an upper bound on . In fact, his second theorem
strengthens the results by considering a geometric mean of , , . . . ,. We leave the proof of the theorem to the
reader.

Theorem 11 (Minkowski’s Second Theorem). For all full rank lattices ,

(

n∏
i=1

)1/n ≤
√
n ∗ (det())1/n.
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Figure 3: The first and second successive minima in the lattice generated by (1, 0) and (0, 3). Knowing
that = ||x1||, we can ask whether = ||x2||,= 2 or = ||x3||. By the definition, = ||x3||.

5 Applications of Minkowski’s Theorem

Minkowski’s Theorem is widely used in computer and mathematical sciences. For example, we now can
prove the following theorems:

• Dirichlets theorem on Diophantine approximation. This theorem allows us to approximate real numbers
with rationals (See Figure-4 for an example).

• Lagranges four-square theorem. Intuitively, the theorem states that we can express every positive
integer as the sum of four squares of integers. We leave the proof of this theorem to the reader.

Theorem 12 (Dirichlet’s Theorem on Diophantine Approximation). For all λ ∈ R and all Q ∈ N, there
exists p, q such that

q < Q and |λ− p

q
| ≤ 1

qQ
.

Proof. Consider the lattice =. Let S = {(x, y) : −Q ≤ x ≤ Q,− 1
Q ≤ λx− y ≤

1
Q}.

Now, vol(S) = base*height= 2
Q ∗ 2Q = 4. Therefore, vol(S) ≥ 22det().

Applying Minkowski’s first theorem, we know that there exists (q, p) ∈ such that,

−Q ≤ q ≤ Q and − 1

Q
≤ λq − p ≤ 1

Q
.

Therefore, |λq − p| ≤ 1
Q , which implies |λ− p

q | ≤
1
qQ .
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Figure 4: Applying Dirichlet’s theorem to approximate 0.846153846 for Q = 3, we can see that there
exists (p, q) satisfying the requirements. For example, (p, q) = (1, 1), since 1 ≤ 3 and |0.846153846 − 1| =
0.153846154 ≤ 1

1∗3 .
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