
Sampling Lattice Trapdoors

November 10, 2015

Today:

• 2 notions of lattice trapdoors

• Efficient sampling of trapdoors

• Application to digital signatures

Last class we saw one type of lattice trapdoor for a matrix A and that it was sufficient for solving
LWE and ISIS with matrix A. The difficulty is in sampling uniform A along with a trapdoor. Today
we will look at a particular matrix for which we can easily describe a trapdoor. With this matrix
in hand, it will suffice to sample a different type of trapdoor – a task that will be simpler. Finally,
we will demonstrate a simple digital signature scheme based on the above.

1 2 types of trapdoors

1.1 Type 1

This is the notion of a trapdoor that we saw last class.

Definition 1.1 (L⊥(A)). For a matrix A ∈ Znq×m, we denote by L⊥ the dual lattice of A composed
of all vectors in the kernal of A (arithmetic done mod q):

L⊥(A) , {x ∈ Zm : Ax = 0 mod q}

A trapdoor T for A is a short basis for the lattice L⊥(A).

Definition 1.2 (‘Type 1’ Trapdoor). For matrices A ∈ Znq ×m and T ∈ Zm×mq , T is a trapdoor
for A if:

1. AT ≡ 0n×m mod q

2. T is full rank over Z.

3. Each column ti of T =

[
t1 t2 · · · tm

]
is ‘short’.

Last class, we saw that, given such a trapdoor T for A, one could efficiently solve LWE and
ISIS.

1



1.2 The Gadget Matrix

A special matrix that will be important for us later is the “gadget matrix” G, whose trapdoor is
very easily understood.

Definition 1.3 (Gadget Matrix G). Let g = [1 2 4 · · · 2dlog qe−1]. The gadget matrix G ∈ Zn×n log q
q

is G , g ⊗ In:

G =


g 0 · · · 0
0 g · · · 0
...

...
. . .

...
0 0 · · · g


The vector g can be thought of a binary recomposition1 operator, taking the binary rep-

resentation (as a column vector) binary(x) ∈ Zn log q
q of an integer x ∈ Zq, and mapping it to

gT · binary(x) = x. Likewise, for integers x1, . . . , xn ∈ Zq, G is the operator mapping b ∈ Zn
2 log q
q to

Gb:

b =

binary(x1)
...

binary(xn)

 7→ Gb =

x1...
xn


One possible trapdoor Tg for g is:

Tg ,



2 0 0 · · · 0
−1 2 0 · · · 0
0 −1 2 · · · 0 binary(q)
...

...
...

. . .
...

0 0 0 · · · 2
0 0 0 · · · −1


where binary(q) ∈ Zdlog qe−1q is the binary expansion of q. It is easy to verify that gTg = 0 and that
each column has short length (all are either

√
5 or O(

√
log q)). Let k = dlog qe−1 and b = binary(q).

Then

det(Tg) =
k∑
i=1

(−1)i−1 · b[i] · 2i−1(−1)k−i = (−1)k−1
k∑
i=1

b[i] · 2i−1 = (−1)k−1q 6= 0

and therefore Tg is full rank over Z (though not full-rank over Zq).
Finally, we define the gadget matrix TG fo the matrix G:

TG , Tg ⊕ In =


Tg 0 · · · 0
0 Tg · · · 0
...

...
. . .

...
0 0 · · · Tg


Just as with Tg, TG is full-rank over Z, has short entries, and is in the null space of G.

Last class, we saw that a (type 1) trapdoor for A suffices to solve LWE and ISIS. Because of the
structure of G, solving these problems with respect to G is particularly efficient.

1The inverse of binary decomposition

2



1.3 Type 2

Our goal is to sample a uniform matrix A along with some auxiliary information that makes solving
LWE (recovering sT given sTA+ e) with matrix A tractable. The trapdoor TG for G enabling us to
solve LWE instances with matrix G efficiently. Therefore it suffices to have auxiliary information
about A that allows us to transform LWE samples for A to LWE samples for G with the same secret.
This information will be a ’type 2’ trapdoor for A.

Definition 1.4 (‘Type 2’ Trapdoor). For matrices A ∈ Znq ×m and R ∈ Zm×n log q
q , R is a trapdoor

for A if:

1. AR = G

2. Each column ri of R =

[
r1 r2 · · · rm

]
is ‘short’.

Remark. We could similarly define a type 2 trapdoor with respect to any full rank matrix G for
which we knew a trapdoor, and the reductions below would suffice. The reason for preferring this
particular gadget matrix G is that its structure makes solving LWE and ISIS conceptually simple
and concretely efficient.

Solving LWE and ISIS.
Given an LWE sample sTA+ eT and a (type 2) trapdoor R for A:

(sTA+ eT )R = sTG+ (eTR)

This is an LWE sample for G with error e′ = eTR.

Similarly, given an ISIS challenge (A, v), we can find a short e such that Ae = v by solving the
corresponding problem with respect to G, and multiplying the solution by R

Ae = A(Re′) = Ge′ = v

SinceG is the binary recomposition matrix, a solution to the above is e′ = [binary(v1)‖ · · · ‖binary(vn)]T .
This e′ is composed only of 0s and 1s and thus ‖e′‖ <

√
n.

2 Sampling Trapdoors

Though we’ve seen that sampling matrices A and associated type 2 trapdoors R suffices for solving
lattice problems, how do we sample such matrices?

1. Sample uniformly A0 ∈ Zn×m0
q

2

2. Sample random R0 ∈ Zm0×n log(q)
q with each entry Ri,j ← Bernoulli(12) is 0 or 1 with equal

probability.

2We shall see below that m0 = n log q + 2n suffices.

3



3.

A ,

[
A0 ‖ −A0R0 +G

]
R ,

[
R0

I

]
It is easy to verify that AR = G, and that the columns ri of R are short with high probability
(in particular, ) We now demonstrate that A sampled as above is statistically-close to uniform. To
prove this, we use the Leftover Hash Lemma. Each column of R0 has m0 := n log q + 2n bits of
entropy. This implies that for each column ri, (A0,−A0ri) ≈2−n (A0, u) where u← Znq is sampled
uniformly. Combining for all the columns, we get that [A0‖ − A0R0 + G] is statistically-close to
[A0‖U ], a completely uniform n×m-matrix.

3 Application to Digital Signatures

Now we’ll see an application of lattice trapdoors in building a simple signature scheme. Observe
that we can already build a signature from lattices assuming that there is a lattice-based one-way
function a la Ajtai [?], using generic constructions of digital signatures from OWFs [?]. In contrast,
we will see a relatively simple and efficient scheme based on [?]. Previously, there were a number
of flawed proposals .

We consider a weak form of security, where the adversary is required to forge a signature on a
specific challenge message msg∗ and the adversary receives signatures on random messages rather
than messages of his choice.

Definition 3.1 (Digital Signatures). A digital signature scheme for messages in M is a tuple of
algorithms (Keygen,Sign,Verify) satisfying the following properties:

Syntax:
• Keygen(1n) → sk, vk is a randomized algorithm taking a security parameter λ ∈ N in

unary, and outputting a signing key sk and a verification key vk.

• Sign(sk,msg) → sig is a randomized algorithm taking a signing key sk and a message
msg ∈M as inputs, and outputting a signature sig.

• Verify(vk, sig,msg)→ {0, 1} is a deterministic algorithm taking a verification key vk, a
signature sig, and a message msg, and outputting b ∈ {0, 1}.

Correctness: A digital signature is correct if validly generated signatures verify. Namely, for all
λ ∈ N, for all sk, vk ← Keygen(1n), and for all msg ∈M:

Verify(vk, Sign(sk,msg),msg) = 1

Security:3 A digital signature scheme is secure if for large enough n ∈ N, all probabilistic polynomial-
time algorithms A have negligible probability of winning in the following game:

• sk, vk ← Keygen(1n)

• msg∗ ←M // The challenge message

• state0 ← A(vk,msg∗);

4



• While done 6← A(statei, sigi)

– statei+1 ← A(statei, sigi)

– msgi+1 ←M
– sigi+1 ← Sign(sk,msgi+1)

• sig∗ ← A(statefinal)

• A wins if
(
Verify(vk, sig∗,msg∗) = 1

)
3.1 A First Attempt

Suppose we have an algorithm A,R ← TrapSamp(n,m, q) that samples matrices A ∈ Zn×mq along

with an associated (type 2) trapdoor R ∈ Zm×n log q
q . Let M = Zmq .

• Keygen(1n) : Sample A,R← TrapSamp(n, ??, ??) . Output sk = R and vk = A.

• Sign(sk,msg) : Solve Ae = y for y := msg, and a short e ∈ Zmq . Output sig = e.

• Verify(vk, sig,msg): Output 1 if
(
Ae = msg

)
∧
(
‖e‖ ≤ poly(n)

)
. Otherwise, output 0.

Forging a signature on msg requires finding a short solution to Ae = b for a random value b = msg
. Given no (msgi, sigi) pairs, this is infeasible by the difficulty of ISIS. But what about when given
many pairs, all with respect to the same signing key A?

Suppose we use the solver for ISIS from Section 1.3 with the trapdoors from Section 2. Then

the adversary receives many signatures of the form sig = Re′ =

[
R0

I

]
e′ =

[
R0e

′

e′

]
, where e′ is

the binary decomposition of msg . With sufficiently many samples, the adversary could efficiently
solve for R0 the system of equations (sig1‖ · · · ‖sigm) = R0E where E = (e′1‖ · · · ‖e′m) can be easily
constructed by the adversary. Given enough signatures, the adversary can reconstruct the trapdoor
R, let alone forge signatures.

3.2 A better “Solve” step

We will fix the above scheme by requiring that “solve” step – hereafter named Solve(A,R, y) –
in the Sign algorithm satisfies some additional property. After defining what a good solver is, we
demonstrate that it suffices to prove existential unforgeability under chosen-message attack. Next
lecture, we will look at such a good Solve algorithm, based on discrete Guassian sampling.

We will call Solve good if its outputs statistically hide the trapdoor R in the following strong
sense.

Definition 3.2 (Good Solve). Let Solve(A,R, y) be an algorithm that outputs short solutions to
Ae = y. Solve is good if for some σ > 0, for every short trapdoor R:(

A← Zn×mq , e← DZm,σ, y := Ae

)
≈s
(
A← Zn×mq , Solve(A,R, y), y ← Zmq

)
where ≈s denotes statistical closeness 2−n.4 and DZm,σ denotes the discrete Guassian distribution
on Zm with standard deviation σ.

4Computational, rather than statistical, indistinguishability would suffice.

5



That is, the output distribution of e ← Solve(A,R, y) is statistically close to sampling e from
discrete Guassian conditioned on Ae = y.

We now reduce solving SIS to violating the security of the signature scheme in Section 3.1
instantiated with a “good” Solve algorithm.

Reducing SIS to forging: Given an SIS challenge A ∈ Zn×mq , our goal is to find a short e ∈ Zmq
such that Ae ≡ 0n mod q. Run the adversary A for the signature scheme, but generate message-
signature pairs by sampling sig := e← DZm,σ from a discrete Guassian and setting msg := y = Ae.
Additionally, choose e∗ ← DZm,σ and set the challenge message msg∗ = Ae∗.

By the goodness of Solve, this distribution on messages and signatures is statistically indistin-
guishable from the real distribution (random messages and signatures generated by Solve(A,R, y)).
Any A that forges when given samples from the latter must also forge when given samples from
the former. Thus, with noticeable probability, A will output a signature sig∗∗ = e∗∗ such that
Ae∗∗ = Ae∗ and ‖e∗∗‖ is short.

With high probability e∗∗ 6= e∗. Therefore, e∗∗ − e∗ 6= 0 is a solution to SIS for matrix A.

6


	2 types of trapdoors
	Type 1
	The Gadget Matrix
	Type 2

	Sampling Trapdoors
	Application to Digital Signatures
	A First Attempt
	A better ``Solve'' step


