Sampling Lattice Trapdoors

November 10, 2015

Today:

- 2 notions of lattice trapdoors
- Efficient sampling of trapdoors
- Application to digital signatures

Last class we saw one type of lattice trapdoor for a matrix A and that it was sufficient for solving LWE and ISIS with matrix A. The difficulty is in sampling uniform A along with a trapdoor. Today we will look at a particular matrix for which we can easily describe a trapdoor. With this matrix in hand, it will suffice to sample a different type of trapdoor - a task that will be simpler. Finally, we will demonstrate a simple digital signature scheme based on the above.

12 types of trapdoors

1.1 Type 1

This is the notion of a trapdoor that we saw last class.
Definition $1.1\left(L^{\perp}(A)\right)$. For a matrix $A \in \mathbb{Z}_{q}^{n} \times m$, we denote by L^{\perp} the dual lattice of A composed of all vectors in the kernal of $A($ arithmetic done $\bmod q)$:

$$
L^{\perp}(A) \triangleq\left\{x \in \mathbb{Z}^{m}: A x=0 \quad \bmod q\right\}
$$

A trapdoor T for A is a short basis for the lattice $L^{\perp}(A)$.
Definition 1.2 ('Type 1' Trapdoor). For matrices $A \in \mathbb{Z}_{q}^{n} \times m$ and $T \in \mathbb{Z}_{q}^{m \times m}$, T is a trapdoor for A if:

1. $A T \equiv 0^{n \times m} \bmod q$
2. T is full rank over \mathbb{Z}.
3. Each column t_{i} of $T=\left[t_{1} t_{2} \cdots t_{m}\right]$ is 'short'.

Last class, we saw that, given such a trapdoor T for A, one could efficiently solve LWE and ISIS.

1.2 The Gadget Matrix

A special matrix that will be important for us later is the "gadget matrix" G, whose trapdoor is very easily understood.
Definition 1.3 (Gadget Matrix $G)$. Let $g=\left[\begin{array}{llll}1 & 2 & \cdots & 2^{[\log q\rceil-1}\end{array}\right]$. The gadget matrix $G \in \mathbb{Z}_{q}^{n \times n \log q}$ is $G \triangleq g \otimes I_{n}$:

$$
G=\left[\begin{array}{cccc}
g & 0 & \cdots & 0 \\
0 & g & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & g
\end{array}\right]
$$

The vector g can be thought of a binary recomposition ${ }^{1}$ operator, taking the binary representation (as a column vector) binary $(x) \in \mathbb{Z}_{q}^{n \log q}$ of an integer $x \in \mathbb{Z}_{q}$, and mapping it to $g^{T} \cdot \operatorname{binary}(x)=x$. Likewise, for integers $x_{1}, \ldots, x_{n} \in \mathbb{Z}_{q}, G$ is the operator mapping $b \in \mathbb{Z}_{q}^{n^{2} \log q}$ to $G b$:

$$
b=\left[\begin{array}{c}
\operatorname{binary}\left(x_{1}\right) \\
\vdots \\
\operatorname{binary}\left(x_{n}\right)
\end{array}\right] \mapsto G b=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

One possible trapdoor T_{g} for g is:

$$
T_{g} \triangleq\left[\begin{array}{cccccc}
2 & 0 & 0 & \cdots & 0 & \\
-1 & 2 & 0 & \cdots & 0 & \\
0 & -1 & 2 & \cdots & 0 & \operatorname{binary}(q) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \\
0 & 0 & 0 & \cdots & 2 & \\
0 & 0 & 0 & \cdots & -1 &
\end{array}\right]
$$

where $\operatorname{binary}(q) \in \mathbb{Z}_{q}^{[\log q]-1}$ is the binary expansion of q. It is easy to verify that $g T_{g}=0$ and that each column has short length (all are either $\sqrt{5}$ or $O(\sqrt{\log q})$). Let $k=\lceil\log q\rceil-1$ and $b=\operatorname{binary}(q)$. Then

$$
\operatorname{det}\left(T_{g}\right)=\sum_{i=1}^{k}(-1)^{i-1} \cdot b[i] \cdot 2^{i-1}(-1)^{k-i}=(-1)^{k-1} \sum_{i=1}^{k} b[i] \cdot 2^{i-1}=(-1)^{k-1} q \neq 0
$$

and therefore T_{g} is full rank over \mathbb{Z} (though not full-rank over \mathbb{Z}_{q}).
Finally, we define the gadget matrix T_{G} fo the matrix G :

$$
T_{G} \triangleq T_{g} \oplus I_{n}=\left[\begin{array}{cccc}
T_{g} & 0 & \cdots & 0 \\
0 & T_{g} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & T_{g}
\end{array}\right]
$$

Just as with T_{g}, T_{G} is full-rank over \mathbb{Z}, has short entries, and is in the null space of G.
Last class, we saw that a (type 1) trapdoor for A suffices to solve LWE and ISIS. Because of the structure of G, solving these problems with respect to G is particularly efficient.

[^0]
1.3 Type 2

Our goal is to sample a uniform matrix A along with some auxiliary information that makes solving LWE (recovering s^{T} given $s^{T} A+e$) with matrix A tractable. The trapdoor T_{G} for G enabling us to solve LWE instances with matrix G efficiently. Therefore it suffices to have auxiliary information about A that allows us to transform LWE samples for A to LWE samples for G with the same secret. This information will be a 'type 2' trapdoor for A.

Definition 1.4 ('Type 2' Trapdoor). For matrices $A \in \mathbb{Z}_{q}^{n} \times m$ and $R \in \mathbb{Z}_{q}^{m \times n \log q}$, R is a trapdoor for A if:

1. $A R=G$
2. Each column r_{i} of $R=\left[\begin{array}{lll}r_{1} & r_{2} & \cdots\end{array} r_{m}\right]$ is 'short'.

Remark. We could similarly define a type 2 trapdoor with respect to any full rank matrix G for which we knew a trapdoor, and the reductions below would suffice. The reason for preferring this particular gadget matrix G is that its structure makes solving LWE and ISIS conceptually simple and concretely efficient.

Solving LWE and ISIS.

Given an LWE sample $s^{T} A+e^{T}$ and a (type 2) trapdoor R for A :

$$
\left(s^{T} A+e^{T}\right) R=s^{T} G+\left(e^{T} R\right)
$$

This is an LWE sample for G with error $e^{\prime}=e^{T} R$.
Similarly, given an ISIS challenge (A, v), we can find a short e such that $A e=v$ by solving the corresponding problem with respect to G, and multiplying the solution by R

$$
A e=A\left(R e^{\prime}\right)=G e^{\prime}=v
$$

Since G is the binary recomposition matrix, a solution to the above is $e^{\prime}=\left[\operatorname{binary}\left(v_{1}\right)\|\cdots\| \operatorname{binary}\left(v_{n}\right)\right]^{T}$. This e^{\prime} is composed only of 0 s and 1 s and thus $\left\|e^{\prime}\right\|<\sqrt{n}$.

2 Sampling Trapdoors

Though we've seen that sampling matrices A and associated type 2 trapdoors R suffices for solving lattice problems, how do we sample such matrices?

1. Sample uniformly $A_{0} \in \mathbb{Z}_{q}^{n \times m_{0}} 2$
2. Sample random $R_{0} \in \mathbb{Z}_{q}^{m_{0} \times n \log (q)}$ with each entry $R_{i, j} \leftarrow \operatorname{Bernoulli}\left(\frac{1}{2}\right)$ is 0 or 1 with equal probability.

[^1]3.
\[

$$
\begin{gathered}
A \triangleq\left[A_{0} \|-A_{0} R_{0}+G\right] \\
R \triangleq\left[\begin{array}{c}
R_{0} \\
I
\end{array}\right]
\end{gathered}
$$
\]

It is easy to verify that $A R=G$, and that the columns r_{i} of R are short with high probability (in particular,) We now demonstrate that A sampled as above is statistically-close to uniform. To prove this, we use the Leftover Hash Lemma. Each column of R_{0} has $m_{0}:=n \log q+2 n$ bits of entropy. This implies that for each column $r_{i},\left(A_{0},-A_{0} r_{i}\right) \approx_{2^{-}}\left(A_{0}, u\right)$ where $u \leftarrow \mathbb{Z}_{q}^{n}$ is sampled uniformly. Combining for all the columns, we get that $\left[A_{0} \|-A_{0} R_{0}+G\right]$ is statistically-close to $\left[A_{0} \| U\right]$, a completely uniform $n \times m$-matrix.

3 Application to Digital Signatures

Now we'll see an application of lattice trapdoors in building a simple signature scheme. Observe that we can already build a signature from lattices assuming that there is a lattice-based one-way function a la Ajtai [?], using generic constructions of digital signatures from OWFs [?]. In contrast, we will see a relatively simple and efficient scheme based on [?]. Previously, there were a number of flawed proposals .

We consider a weak form of security, where the adversary is required to forge a signature on a specific challenge message $m s g^{*}$ and the adversary receives signatures on random messages rather than messages of his choice.

Definition 3.1 (Digital Signatures). A digital signature scheme for messages in \mathcal{M} is a tuple of algorithms (Keygen, Sign, Verify) satisfying the following properties:

Syntax:

- Keygen $\left(1^{n}\right) \rightarrow s k, v k$ is a randomized algorithm taking a security parameter $\lambda \in \mathbb{N}$ in unary, and outputting a signing key sk and a verification key vk.
- Sign $(s k, m s g) \rightarrow$ sig is a randomized algorithm taking a signing key sk and a message $m s g \in \mathcal{M}$ as inputs, and outputting a signature sig.
- Verify $(v k, \operatorname{sig}, m s g) \rightarrow\{0,1\}$ is a deterministic algorithm taking a verification key $v k$, a signature sig, and a message msg, and outputting $b \in\{0,1\}$.

Correctness: A digital signature is correct if validly generated signatures verify. Namely, for all $\lambda \in \mathbb{N}$, for all $s k, v k \leftarrow \operatorname{Keygen}\left(1^{n}\right)$, and for all $m s g \in \mathcal{M}$:

$$
\operatorname{Verify}(v k, \operatorname{Sign}(s k, m s g), m s g)=1
$$

Security: ${ }^{3}$ A digital signature scheme is secure if for large enough $n \in \mathbb{N}$, all probabilistic polynomialtime algorithms \mathcal{A} have negligible probability of winning in the following game:

- $s k, v k \leftarrow \operatorname{Keygen}\left(1^{n}\right)$
- $m s g^{*} \leftarrow \mathcal{M}$ // The challenge message
- state $_{0} \leftarrow \mathcal{A}\left(v k, m s g^{*}\right)$;
- While done $\nleftarrow \mathcal{A}\left(\right.$ state $_{i}$, sig $\left._{i}\right)$
- state $_{i+1} \leftarrow \mathcal{A}\left(\right.$ state $_{i}$, sig $\left._{i}\right)$
$-m s g_{i+1} \leftarrow \mathcal{M}$
$-s i g_{i+1} \leftarrow \operatorname{Sign}\left(s k, m s g_{i+1}\right)$
- $s i g^{*} \leftarrow \mathcal{A}\left(\right.$ state $\left._{\text {final }}\right)$
- \mathcal{A} wins if $\left(\operatorname{Verify}\left(v k, s i g^{*}, m s g^{*}\right)=1\right)$

3.1 A First Attempt

Suppose we have an algorithm $A, R \leftarrow \operatorname{TrapSamp}(n, m, q)$ that samples matrices $A \in \mathbb{Z}_{q}^{n \times m}$ along with an associated (type 2) trapdoor $R \in \mathbb{Z}_{q}^{m \times n \log q}$. Let $\mathcal{M}=\mathbb{Z}_{q}^{m}$.

- Keygen $\left(1^{n}\right):$ Sample $A, R \leftarrow \operatorname{TrapSamp}(n$, ??, ??) . Output $s k=R$ and $v k=A$.
- $\operatorname{Sign}(s k, m s g)$: Solve $A e=y$ for $y:=m s g$, and a short $e \in \mathbb{Z}_{q}^{m}$. Output sig $=e$.
- Verify $(v k, s i g, m s g)$: Output 1 if $(A e=m s g) \wedge(\|e\| \leq \operatorname{poly}(n))$. Otherwise, output 0 .

Forging a signature on $m s g$ requires finding a short solution to $A e=b$ for a random value $b=m s g$. Given no $\left(m s g_{i}, s i g_{i}\right)$ pairs, this is infeasible by the difficulty of ISIS. But what about when given many pairs, all with respect to the same signing key A ?

Suppose we use the solver for ISIS from Section 1.3 with the trapdoors from Section 2. Then the adversary receives many signatures of the form $\operatorname{sig}=R e^{\prime}=\left[\begin{array}{c}R_{0} \\ I\end{array}\right] e^{\prime}=\left[\begin{array}{c}R_{0} e^{\prime} \\ e^{\prime}\end{array}\right]$, where e^{\prime} is the binary decomposition of $m s g$. With sufficiently many samples, the adversary could efficiently solve for R_{0} the system of equations $\left(\operatorname{sig}_{1}\|\cdots\| \operatorname{sig}_{m}\right)=R_{0} E$ where $E=\left(e_{1}^{\prime}\|\cdots\| e_{m}^{\prime}\right)$ can be easily constructed by the adversary. Given enough signatures, the adversary can reconstruct the trapdoor R, let alone forge signatures.

3.2 A better "Solve" step

We will fix the above scheme by requiring that "solve" step - hereafter named Solve (A, R, y) in the Sign algorithm satisfies some additional property. After defining what a good solver is, we demonstrate that it suffices to prove existential unforgeability under chosen-message attack. Next lecture, we will look at such a good Solve algorithm, based on discrete Guassian sampling.

We will call Solve good if its outputs statistically hide the trapdoor R in the following strong sense.

Definition 3.2 (Good Solve). Let $\operatorname{Solve}(A, R, y)$ be an algorithm that outputs short solutions to $A e=y$. Solve is good if for some $\sigma>0$, for every short trapdoor R :

$$
\left(A \leftarrow \mathbb{Z}_{q}^{n \times m}, e \leftarrow D_{\mathbb{Z}^{m}, \sigma}, y:=A e\right) \approx_{s}\left(A \leftarrow \mathbb{Z}_{q}^{n \times m}, \operatorname{Solve}(A, R, y), y \leftarrow \mathbb{Z}_{q}^{m}\right)
$$

where \approx_{s} denotes statistical closeness $2^{-n} .{ }^{4}$ and $D_{\mathbb{Z}^{m}, \sigma}$ denotes the discrete Guassian distribution on \mathbb{Z}^{m} with standard deviation σ.

[^2]That is, the output distribution of $e \leftarrow \operatorname{Solve}(A, R, y)$ is statistically close to sampling e from discrete Guassian conditioned on $A e=y$.

We now reduce solving SIS to violating the security of the signature scheme in Section 3.1 instantiated with a "good" Solve algorithm.

Reducing SIS to forging: Given an SIS challenge $A \in \mathbb{Z}_{q}^{n \times m}$, our goal is to find a short $e \in \mathbb{Z}_{q}^{m}$ such that $A e \equiv 0^{n} \bmod q$. Run the adversary \mathcal{A} for the signature scheme, but generate messagesignature pairs by sampling $\operatorname{sig}:=e \leftarrow D_{\mathbb{Z}^{m}, \sigma}$ from a discrete Guassian and setting msg :=y $=A e$ Additionally, choose $e^{*} \leftarrow D_{\mathbb{Z}^{m}, \sigma}$ and set the challenge message $m s g^{*}=A e^{*}$.

By the goodness of Solve, this distribution on messages and signatures is statistically indistinguishable from the real distribution (random messages and signatures generated by Solve (A, R, y)). Any \mathcal{A} that forges when given samples from the latter must also forge when given samples from the former. Thus, with noticeable probability, \mathcal{A} will output a signature $s i g^{* *}=e^{* *}$ such that $A e^{* *}=A e^{*}$ and $\left\|e^{* *}\right\|$ is short.

With high probability $e^{* *} \neq e^{*}$. Therefore, $e^{* *}-e^{*} \neq 0$ is a solution to SIS for matrix A.

[^0]: ${ }^{1}$ The inverse of binary decomposition

[^1]: ${ }^{2}$ We shall see below that $m_{0}=n \log q+2 n$ suffices.

[^2]: ${ }^{4}$ Computational, rather than statistical, indistinguishability would suffice.

