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Abstract

The combination of ultrawideband (UWB) radios and inertial measurement units (IMU) can pro-
vide accurate positioning. To ensure reliable communication, the radios are generally mounted at the
extremities of a mobile system whereas the IMUs are located closer to the center of gravity for use
in control, resulting in a spatial offset between the IMU and the UWB radio. Additionally, data from
heterogeneous sensors can arrive at different time instants. The systematic fusion of data from multiple
sources requires the temporal offset and spatial offset between the sensors to be known.

An important aspect of calibration is the observability of the system state and identifiability of the
system parameters. Estimating the state or parameters of a system that is otherwise unobservable or
unidentifiable, can result in poor estimates. In this report, the local weak observability of the state and
the identifiability of the temporal offset for a tightly-coupled UWB-aided inertial localization system
is studied.
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1 Introduction

A typical UWB-based positioning system consists of UWB radios, known as anchors, installed in the
surrounding environment. A mobile system equipped with a UWB radio calculates its position by mea-
suring the time of flight between its UWB radio and the anchors. Generally, IMUs and UWB radios are
not co-located and there is a spatial offset between the two sensors, also referred to as sensor extrinsic
parameters. This spatial offset can affect positioning accuracy.

Additionally, data from heterogeneous sensors are generally timestamped with different sources of
clocks which results in a temporal offset. Most sensor fusion schemes require data from different sensors
to have timestamps with respect to a single clock. This is generally done through hardware synchronization
by using a common clock signal for multiple sensors. The next best choice is software synchronization,
with a server running on a destination computer and a client on the sensor hardware. However, many
off-the-shelf components do not support either of these methods. Estimating the state of a mobile sys-
tem without compensating for the sensor extrinsic parameters or the temporal offset can result in poor
positioning accuracy, particularly for large offsets.

An important aspect of calibration is the ability to unambiguously recover the relevant system states
given system outputs. This can be accomplished using observability and identifiability analysis. In this
report, we analyze the observability of the core state, including the sensor extrinsic parameters and the
identifiability of the temporal offset parameter.

Figure 1: The relationship between different frames involved in calibration of sensor extrinsics. Frame {WW} corresponds to a
gravity-aligned world reference frame. IMU and mobile radio reference frames are represented by {I} and {U}, respectively.
The offset of mobile radio in the IMU frame is pIU. The frame affixed to the phase center of j** anchor is {A} 4 and its position
in world reference frame is p}’v. The pose of the IMU in world frame is {p!V, ¢}V }.
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2 System Modelling

We define the following coordinate frames for the setup in Fig. [I}

1. world frame {1/}, a local absolute reference frame, in which the pose of the IMU and the positions
of individual anchors are expressed.

2. mobile radio frame {U}, a frame affixed to the phase center of the mobile radio antenna. The
phase center is the point on the antenna from which the electromagnetic radiation spreads spherically
outward.

3. IMU frame {/}, a frame corresponding to the IMU body center, in which the body accelerations
and angular velocities are measured.

4. anchor frame { A}, a frame affixed to the phase center of the ;" anchor.

The relationship between the different frames of reference is shown in Fig. |1 Next, we describe the
system parameterization, sensor models, motion model, and observation model.

2.1 System parameterization

The system is parameterized by the following 20 dimensional state vector:

x(t) = (P} (1), V1" (1), ar’ (t), ba(t), bu(t), Py (1) ta), ()

where, {pV (1), vV (t),q}¥ ()} denote the position, translational velocity and orientation of the IMU frame
with respect to the world frame. A unit quaternion parameterization is used for representing orienta-
tions. We use quaternions for their algebraic properties and singularity-free orientation representation.
Accelerometer and gyroscope biases are denoted by b,(¢) and b,(¢) and constitute the intrinsic parame-
ters of the IMU. The sensor extrinsic parameter p?;(¢) is the position of the mobile radio expressed in the
IMU frame and ¢, is the temporal offset between UWB and IMU sampling instants.

2.2 Gyroscope and accelerometer model

The measured angular rate by a single-axis gyroscope w, is related to the true angular rate w; as:
Wm :wt+bw+nwa (2)

where b, is a time-varying bias and n,, is assumed to be a realization of an additive white Gaussian noise
(AWGN) source with covariance N,, i.e. n, ~ N(0,N,). The bias is modelled as being driven by a
AWGN noise source: b, = np,, where ny, ~ N (0, Np,). A similar model is used for the individual
axes of a triaxial gyroscope: wy,, = (Ws,wy, ws), by = (bwa; buy, bwz)s Moy = (Mbws Nbwys Mbws)s Qu =
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diag([02,, 02,,02.]) and Qu, = diag([0},,,, 04, Oin..])- The measured linear acceleration a,, is related

O wy? wz
to the true linear acceleration a; as:

A = Q; + by + 1y, 3)

where b, is a time-varying bias and n, is assumed to be an AWGN source of covariance N, i.e. n, ~
N(0,N,). As before, the bias is modelled as being driven by another AWGN noise source ny, ~

N (0, Ny,): b, = ny,. The model is extended to a triaxial accelerometer with: a,, = (ay,ay,a;), by =

(baxa baya baz)a Ny, = (nba:m nbaya nbaz) Qa - dlag([ Oazs 3y> az]) and Qba - dlag([abaam Ul?aya Ugaz])

2.3 Motion model

The motion model in this work is a 3D kinematic motion model where the accelerometer and gyroscope
measurements are used as control inputs:

pr =vr, ar = %ﬂ(woq? , )
=R} a, —g", b, = Ny, (5)
by = ., Pl = 05, ©)
ta =0, (7
where
0 —wl
aw)= |0 o |
g =[0,0,9.8/Tm/s® represents the acceleration due to gravity in the world frame, R}” := R{q}"} is

the direction cosine matrix corresponding to the nominal orientation, and [-]« denotes the skew-symmetric
cross-product matrix.

2.4 Observation model

In a tightly-coupled system, the observation model is the distance between an anchor and the mobile radio.
The measured distance to the i*” anchor at time ¢, is:

h(p}/vvx(tr)) = le/V - pIZ/JV(tr)||2 +n,.(t), (8)

where p! is the position of the i*" static anchor, p¥ (t,) = RY (¢,)p}; + pY (,) is the position of the
mobile radio at time ¢, and ||.|| denotes the /5 norm. The measurement noise n,(,) is assumed to be a
zero-mean AWGN process, with covariance Q,, i.e. n.(t,) ~ N(0,Q,). Calculating (8) requires the value
of the state (1)) at time ¢,.. In this paper, we use UWB time as reference time. Let ¢,. be the timestamp of
the latest UWB and IMU measurement. Note that due to the temporal offset ¢,, the IMU measurement is
actually generated at time ¢t; = ¢, — t4. To calculate the state at time ¢,., we propogate the state at time ¢;
for t4 seconds using the motion model (@)-(6) and the IMU measurement at time ¢;.

5
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3 Observability and Identifiability analysis

The goal of observability analysis is to check if the state of a system can be determined uniquely given the
outputs of a system. We decompose the problem of observability of the state (1)) into (i) local identifiability
of t; [4] and (ii) local weak observability [2] of the part of the state excluding ¢;. The motivation and
justification is provided below.

From (§)), we see that ¢; can be modelled as a time-delay parameter. In [4], it is shown that the
identifiability of a single unknown constant time-delay can be analyzed independent of the observability
of the state. The authors show that the identifiability of a single unknown constant time-delay in a nonlinear
system is not directly related to the observability of other system states or parameters. Specifically, the
time-delay parameter can be identified directly from the input-output representation [4] of the system.
Thus, determining the identifiability of time-delay is equivalent to determining the existence of an input-
output representation, which solely depends on the systems inputs, outputs, and their time-derivatives and
not on the state. A necessary and sufficient condition for the existence of an input-output representation
is the occurrence of the delayed input variables (in this case a,, and w,;) in the output (Theorem 2 in
[4]). We use this approach to analyze the local identifiability of ¢,.

As noted in [4], identifiability of time-delay does not imply observability of the state. After proving
the local identifiability of ¢4, we analyze the observability of the part of the state excluding ¢4, X =
(Y, v}, d¥,b,, b, pl). For this, we use the method outlined in [2], which involves determining the
rank of the observability matrix O [2l]. The methods outlined in [4] and [2] consider the case of noise-free
nonlinear systems. Hence, for analysis, we neglect the effect of noise parameters in the following sections.

3.1 Local identifiability of the temporal offset

Following [4], the local identifiablility of ¢; depends on whether it is present in the input-output represen-
tation of the system (4)-(6)) and (8), that is, the presence of delayed input variable(s) in the output function.
In our case, it is sufficient to show that a,, (¢, — t4) or w,,(t, — t,4) appear in the measurement model.
Without loss of generality, the measurement model (8)) can be written as:

1

h(p}" x(t)) = 5P} = pu ()], 9)

where p}Y (t,.) is the position of the mobile radio at time ¢, and || - || denotes the ¢, norm. We consider a
single anchor as the analysis is identical for other anchors. The factor 1/2 is introduced for simplifying
the analysis. Since there are two inputs, ¢4 can be locally identified if either a,, or w,, is excited. In the
following theorem, we state the conditions under which ¢, is locally identifiable.

Theorem 1. The temporal offset parameter ty € (0,T), for some T € R, is locally identifiable from the
observation model (9) if:

(T1) the mobile radio is not co-located with the anchor; and either (T2) or (T3) is satisfied:

(T2) at least one of a, a,, or a. is excited; or
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(T3) the mobile radio is not co-located with the IMU and all three of w,, w,, or w, are excited.

Proof. Expand p;/ in measurement model (9):

1
h(p;" x(t) = 5lIp" =Ry (t)py = pr (8)3-

To calculate pY (¢,.), we propogate the state forward in time by using the motion model (@)-(6). We
perform Euler integration by assuming a constant a,,, for the duration of the integration ¢4:

LR (1) (@ (tr) — ba(tr)E

py (t:) = py (tr) + v (t)ta + 5

Rewriting a,,(¢;) as a,,(t, — t4) in the above expression yields:

LR (1) (an(ty — 1) — ba ()£ (10)

py (t:) = py (tr) + v (t)ta + i

Now we expand R} (¢,)p}, = RV (¢ + t4)p};. For a small angular-increment 56 = wyt 4, we have the
following relation:

RY (t; + tq) = R (t))elws(tn)talx

where e denotes the matrix exponential for a matrix A [5]. Approximating the matrix exponential to
first-order:

ellonth) e Tt [wn(tr)ta]« + O(t),
where I is the identity matrix. Using w; = w,, — b,, we have:

Ry (t,)py ~ RY (tr) (T+ [wi(t)ta)x) Py

=R} (t)py + (RY (1) [wm(tr) — bu(tr)]x) Prr ta;

=R} (tr)py + RY (t1)[wn(tr) — bu(tr)]<Py ta.
(
(

Rewriting w,, (t7) as w,,(t, — t4) in the above expression and using the relation yields:
R} (t,)py = RY (t)py + R (t)Py (Wit — ta) = bu(tr)]x ta. (11)
The required condition for ¢4 to be locally identifiable is:

Oh™ (p}", x(t.))
8u (t —td)

#0 (12)

for some k£ > 0. First, we consider the derivative with respect to accelerometer inputs. Since the ac-
celerometer can be excited along three orthogonal axes, we calculate the derivative along the individual

7
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axes: a,, = [l,a, + 1,a, + 1.a,], where 1, = [1,0,0]%, 1, = [0,1,0]" and 1, = [0,0, 1], represent
the axes of acceleration in the IMU body frame. The derivative of (8), when the accelerometer axes are

excited is given by:

1
= —op/ RY(t)) 1, t2
Day(t, —tg) 2 P M (tr) Lo ta:

1
= —op! RV (t;) 1, t2

1
= —op! RV (t;) 1, 2.

where dp; = p}¥ — R} (t;)p!; — p}¥ (t1). The above derivatives are simultaneously zero if:

SplRY (t;) t2 = 0.

For any non-zero time delay ¢; cannot be zero. Note that a valid rotation matrix R has determinant
1: its kernel space is trivial, {Rv = 0 = v = 0}. Thus, ép! - RV (¢;) = 0, only if dp; = 0, which
requires the mobile UWB radio and the ' anchor to be co-located, practically this is not possible. Thus,
if the mobile radio and the anchor are not co-located, then %, is locally identifiable when accelerometer

axes are excited .

Now, we consider the derivative with respect to gyroscope inputs. Similar to the case above, the
gyroscope can be excited along three orthogonal axes, we calculate the derivative along the individual
axes: wy, = [L,w, + 1w, + 1,w,], where 1, = [1,0,0]", 1, = [0,1,0]" and 1, = [0, 0, 1], represent the

axes of rotation in the IMU body frame. The derivative of (8], when w, is excited is given by:

oh (pgv? X(tr))
awx(tr — td)

T

1
=5 (RF7(t)0ps) L] Pl ta:

Consider the following vector:

R (t1)dpi = RV () (0 — RY (t)pl, — PV (1)) ,
T
=R} (t;) (p]" — p} (tr)) — P,

1
= §5piT R} (tr) [La)x PL ta,

(13)

(14)

(15)

where use the fact for a rotation matrix R, R™! = R” and RTR = 1. Equation (T3)) projects the
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measurement model into an IMU centeric frame. Using (13) in (I4)) gives:

oh <p2/V, X<tr))

= (R}/I/T(tl) (P —p)(tr) — pIU>T [1.]x Pl ta,

8wx(tr — td)
w T I 1T I
( (pz - p] )) 1]« Py ta — Py [1a]x Py ta;
w T I 1T 1
( (Pz - PI tr )) [1.]x Py ta + Py [Pulx 1a ta,
T
= (RY" ) (0 = (1)) 111 pf ta,
= p!" L)« p{f ta, (16)
where we use the fact that for a skew-symmetric matrix S, S7 = —S and p! = RV (¢;) (P —plY(tr))

is the position of the anchor expressed in IMU frame. The expression (I6)) is zero only if the following
conditions occur:

S1 1td:0,
S2 : pl =0,
S3 :p! =0,

S4 :1, xpl,=0,0r
S5:1,xpl=0.

For any non-zero time delay ¢; # 0. Condition S2 occurs when the mobile radio and the IMU are
co-located. Condition S3 requires the mobile radio and the it" anchor to be co-located. Thus, for ¢, to be
identifiable, the mobile radio cannot be co-located with the IMU or the anchor. Condition S4 occurs when
the axis of rotation is aligned with vector from the IMU to the mobile radio. Similary, condition S5 occurs
when the axis of rotation is aligned with the vector from the IMU to the i*" anchor. A similar analysis for
wy and w, yields:

S6 : 1, x p}, =0,
S7 :1, xpl =0,
S8 : 1, x pl, =0,
9 : 1, x p! = 0.

Note that S4, S6, and S8 cannot be zero simultaneously, i.e. if p’U is aligned with 1, then it cannot
be aligned with 1, which is orthogonal to 1,. Similarly, S5, S7, and S9 cannot be zero simultaneously.
However, it might be the case that w, aligns with p/ and w,, aligns with p},. Thus, excitation of atleast one
of [wy, Wy, wZ]T is a necessary condition and excitation of all three is a sufficient condition for identifiability

9
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of t4. With multiple non-collinear anchors, excitation of two of w,, w,, or w, is sufficient. A requirement
for local identifiability of ¢, is that a change in the input causes a change in the measured range. Condition
T3 in Theorem [l] reflects the fact that if the mobile radio and the IMU are co-located, then for pure
rotational motion the measured range is constant. 0

3.2 Observability of a tightly-coupled UWB-IMU system

To study the observability of the system outlined in (4))-(6)) we use tools from differential geometry. Specif-
ically, we use the concept of local weak observability [2]. The analysis outlined in [2]] considers the case
of noise free autonomous systems without any delay in the observation model (excluding (7)).

3.2.1 Differential geometry and observability of nonlinear systems

Given a vector field f : M — T'M, where T'M € R" is the tangent bundle of the smooth manifold M of
dimension n, the Lie derivative of a smooth function ~ : R — R along the vector field f at x € M is:

Oh(x)

Lyh(x) = o F(x). (17)

The corresponding gradient vector is:

OL sh OL sh
VI h(x) = 5331(}()""’ gx(x), . (18)

Higher-order Lie derivatives are defined recursively as:
Lsh(x) = VLE h(x) £ (x),

with the zeroth-order Lie derviative being L}h(x) = h(x).
We consider causal nonlinear systems that are affine in the control input:

x = fo(x) + Z fi(x)u;,
y = h(x),

(19)

where u € I' C R™ is the input and y € R is the output and x € M is the state. The functions fy and f;
are assumed to be smooth C'*°. In this paper we use the concept of local weak observablility. The system
S in is locally weakly observable at x if there exists an open neighbourhood B of x( in M such that
for every open neighbourhood V' of x, contained in B, the only point indistinguishable from x, is x¢. Let
O denote the matrix formed by stacking the gradients of Lie derivatives of the observation function h. The
system S is said to satisfy the observability rank condition if O has full column rank. Furthermore, S is
said to be locally weakly observable if it satisfies the observability rank condition.

10
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3.2.2 Observability analysis

The system dynamics (#)-(6) are rearranged to have a control affine[2] form:

v 033 ] 0343
-RVb, — g RY 03x3
: —1E{dV}b 0 1=2{q
i _ 2 {qI } w + 3x4 a,, + 2 {ql } Wi, (20)
03 0343 0343
03 03><3 03><3
| 03 1 | 03x3] | O3x3 |
N ~~ 7 | S— _;—/
fo fi f2

where X = (p¥,v}",q, b,, b, p};) is the system state excluding the temporal offset ¢; and

—q1, —4q2, —(G3
_ W — qo, —g3, 42
‘_‘{ql } qs, qo, —q
—q2, q1, qo

Without loss of generality, the observation model (§) can be rewritten as:
1
W w w1 w
h(p)', %) = 5llpi" —RY Py —pr I3,

Measurements from a single anchor are not sufficient to constraint the entire state. Hence, we consider
W _ W W W
measurements to three anchors p;’ = [p;", P}, Py |

P! —RYp{, —pl |3
h(p,',%) = 5 |Ip}" —R"p; —p/l3] - 1)
Ip)) —RYp{ —pl |3

We show that the system (20)-(21) is observable by employing the observability rank condition men-
tioned above. The system (20)-(21) is said to be locally weakly observable if the corresponding observ-
ability matrix O has full column rank, which in this case is 19, corresponding to the size of the state (I)).
To prove this, we construct the matrix O by stacking higher-order Lie derivatives of the vector-valued
function (21)) along the vector field (20). Block Gaussian elimination is then used to identify conditions
under which O has full column rank.

3.2.3 Observability Matrix Construction

The observability matrix O is constructed by taking higher-order Lie derivatives of the measurement func-
tion along the system dynamics [2].

11
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Zeroth order Lie derivatives
1. The zeroth order Lie derivative of h is:

L°h(X) = h(X).

The corresponding gradient is:

VL’h(x) = [_5pijk 033 —0pijrFo Osx3 O3x3 _6piij¥V}>

where F is a 3x4 matrix and is given by,

0 (RI pU)

F, =
0 a(h

Y

and dpyji, = [§piT, op],0pj|" is a matrix of residuals with:

sp; =p; —R}'p; —p},
op; = W -RYp, —p!,
spr=py —R}pL — P

First order Lie derivatives
1. The first order Lie derivative of h along f:

Ly h(x) = VL'h(X) - fo,
_(Spijkv}/v + §5piijOE{q‘[/V}bw
The gradient of L} h(X) is:
VLih(X) = [F1 —0pyr Fy 033 0piuFs Fy,
with F{, F», F'5 and F, defined as:

(VI — LFE{q} }b,)"

Fi= | (vl - {FE{q/"}b.) | F, =

(v — 1F,E{q} }b.)"
1
L =:§FBH{QI} F, =

Second order Lie Derivatives
1. L} h(X) along f;:

L} Ly h(X) = VL; h(X) - fi,
= —5piij}/V.

12
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(22)

(23)

(24)

(25)

(26)

27)

(28)

(29)
(30)
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Note that this is a 3x3 matrix with the first column being influenced by measured acceleration along
body x-axis (a,). Similarly the second and third column are influenced by a, and a, respectively. Thus,
the individual columns are stacked to form a 9x1 vector and the corresponding gradients are computed:

VIL I b)), 1]

VL}IL}Oh(i) = VLIIL}oh<§>[:’2] , 31)
VL Ly h(X)[:, 3]
= [F5 0gx3 Fg Ogxs O3 Fr]. (32)

2. L} h(x) along fy:

L?‘O ( ) VLfo ( )'f0>

1
Fivy +6pyr (R} b, +g") — §F2~{CI1 }b,,

The gradient of L} h(X) is:
VL h(x)=[Fs Fy Fip dp;pR)Y Fu Fio. (33)
3. L°h(x) along fy:
VL},L°h(x) = —p;pFoE{q} }. (34)

Note that this is a 3x3 matrix with the first column being influenced by angular velocity along body
x-axis (w,). Similarly the second and third column are influenced by w, and w, respectively. Thus, the
individual columns are stacked to form a 9x1 vector and the corresponding gradients are computed:

VLY LOh(X)[:, 1]

VL; L'h(x) = VL}QLOh@[:,Q] : (35)
VL, L'h(X)[:, 3]
= [F13 Ogxs Fiy Oges Ogus Fis). (36)

Third order Lie derivatives
1. L} L} h(X) along f:
Ly, Ly, Lj,h(x) = VLf Ly h(X) - fo, (37)

1
SFeE{a) }b,. (38)

The corresponding gradient is:

VL L; Lyh(X) = [Fig F5 Fir 093 Fig Figl. (39)

13
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The observability matrix O is then constructed by stacking the Lie derivatives computed so far:

[ VL’h ] [—0piji O3xs  —0pirFo  Osxs 03x3 —0piipR}]
VL}Oh Fi  —0pijk F, 0s3.3  OpijiFs F,
O — VLchh _ Fy Fy Fio 5Piij¥V Fy, Fio
VL Ly h F; O9x3 Fg 0953 0953 F;
VL L°h Fi3  Ogxs Fiy 0953 093 Fi5

| VLy Ly L h) | Fis F; Fi7 093 Fis Fio |

3.2.4 Proof of local weak observability

Theorem 2. The observability matrix O associated with motion model (20) and observation model
has full column rank if:

(C1) at least three non-collinear anchors are available,

(C2) the mobile radio is non-coplanar with the three non-collinear anchors,

(C3) all three of a,, a, and a, are excited and

(C4) all three of wy, w, and w, are excited.

Proof. We use block Gaussian elimination to prove that the matrix O has full column rank. The process
of Gaussian Elimination followed here exploits the fact that both row and column operations can be used
interchangeably as the rank of the matrix is unaffected by such operations [1].

Step |

The following two columns operations are performed:
Column 3 — Column 1 * F( - Column 3

Column 6 — Column 1 * R}” - Column 6

Column 5 — Column 2 * F3 + Column 5.

-_5pz’jk O3x3 034 0343 O3x3 03x3
Fi.  —opijx F.iFo—F, 033 03x3 FR} —F,
O — Fy Fy FsFo—Fiy dpisRY FoFs; —F;; FsR)Y —Fyy
F; 093  FsFo—Fg 093 093 F;R} —F;
Fi3 Ogx3  FisFg—Fiy  Ogy3 093 Fi3;R) — Fi;
| Fis F; FigFo—Fiz 0o F3;F3+Fiz FigRY —Fig
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Step Il

Column 4 has full column rank contingent on p;;xR} being full rank. A matrix is full rank if its de-
terminant is non-zero. Note that the determinant of a product of matrices is equal to the product of their
individual determinants: for matrices A and B, |AB| = |A||B|, where | - | denotes matrix determinant.
Using this identity:

0pi;x R} | = [0piji| | R}

The determinant of any valid rotation matrix is 1 and so |[R}"| = 1. The matrix dp;;; has full column
rank when the conditions mentioned in Lemma/|ll are satisfied. Under the conditions of Lemma (1l column
4 and row 4 can be eliminated.

[—pij Osxs 0354 O3x3 033 0343 ]
Fi,  —piyjr FiFo—Fy 03,3 0343 F,RY — F,
O — 03x3 03x3 034 | NS 03x3 O3x3
F; O9x3  FsFqg—Fg 0Ogxs O9x3 F:R} — F;
Fi3 O09x3  FisFg—Fiy Ogxs O9x3 FisRY — Fi;
| Fis F; FigFo—Fi7 0gxs F3;F3+Fiz FigRY —Fyg

Step Il

Similarly, p;; has full column rank and column 1 entries can be eliminated:

I3xs  O3x3 0354 033 03x3 03x3
033 —0pijr  F1Fo—F2 0.3 033 F,RY — F,
O — 03x3  O3x3 0354 | EE 033 033
Ogx3  Oguz  FsFo—Fg 0Ogy3 093 F:R}Y — F;
Ogx3  Ogxz Fi3Fg—Fis Ogx3 O9x3 Fi3R) — Fy;
109x5  Fs5  FigFg—Fir 09y F;F3+Fiz FigRY —Fyg

Step IV

Note that F5R¥V — F7 is identically zero. Lemma gives the conditions under which F5Fy — Fg has full
column rank. Column 3 entries can be eliminated safely:

I3z O3x3  O3xs Osx3 033 033

033 —O0Pijk O3xa O3x3 0343 F,RY — F,
O — 033  O3x3  O3xs  I3x3 03x3 03x3

04><3 04><3 I4><4 04><3 04><3 04><3

O9x3  Ogxz  Ogxs Ogxs 093 Fi3R) — Fi5

0955 F5  0gxs Ogxs FsFs+Fi3 FigR) — Fyg
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Step V

FlgR‘I’V — F5 has full column rank under the conditions of Lemma 3| The entries of column and row 6
can be eliminated:

I3z O3x3  O3xs4 Osx3 033 033
033 —5Pz‘jk O3x4 O3x3 0343 03x3
O — 03x3  O3x3 0354 I3x3 03x3 03x3
04x3 O4x3 I4><4 O4x3 04x3 04x3

0353  0O3x3 O3xa O3x3 0343 | B
[09x3  Fs5  Ogus Ogyxz FsF3+ Fig 0gy3]

Step VI

Under the conditions outlined in Lemma 0pijr is full rank, all entries of column 2 can be eliminated:
-ISXS 03x3 03x4 03X3 03x3 03x3-
0353 Isxz 0O3xs Osx3 0343 0343

O — 0353 O3x3 0344 Izxs 0343 0343

04x3 O4x3 I4><4 04x3 04x3 04x3
O3x3 03x3 0O3xa O3x3 033 Isys
[09x3 Ogx3 Ogxs Ogxz FsF3+ Fig 0Ogys|

Step VI

Finally, Lemma[]elicits the conditoins under which F;F3 + F 5 has full column rank:

ISXS 03x3 03x4 03X3 03x3 03x3
03x3 I3zx3 0O3x4 O3x3 Oszx3 0O3x3
O — 0313 O3x3 0O3x4 Isxz Oszx3 0Oszx3
04x3 O4x3 I4><4 04x3 O4x3 04x3
0313 03x3 03x4 0353 O3x3 I3x3
_03x3 03x3 03x4 03X3 I3X3 03x3_

O]

The above proof shows that as long as the conditions outlined in Theorem [2]are satisfied, the state X is
locally weakly observable.
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A Lemmas and their proofs

Lemma 1. : 0p,j;, is full rank if:
* at least three non-collinear anchors 1, j and k are available; and
* the mobile radio is non-coplanar with the three non-collinear anchors.

Proof. The matrix dp;j is given by:

p! —R}"p}, —p})

OPijr = P}/V -R/'p,—p/
py —R}p} —p)
P, P, P

— w w w
- p]x pjy pjz

wow W
| Ptz Pry Pk

where p!¥ denotes the difference between the x-coordinate of the i anchor and the x-coordinate of the
mobile radio expressed in the world frame, V. The determinant is:

6Pkl = Pl oi (P12 + PUo(—2a002 + 2013) + Pir, (20001 + 20203) + pir. (a5 — 6F — 65 + ¢3))

Note that p}“y/ and p}’. cannot be zero if the anchors are to be non-collinear. Thus, the determinant is
zero if the third term vanishes. This term represents the z-coordinate of the position of the mobile radio
in the world frame. Thus, for the matrix 5p3; .. to have full rank, the position of mobile radio expressed in
world frame cannot lie in the plane defined by the non-collinear anchors {7, j, k}. [l

Lemma 2. For any unit-quaternion q, the 9x4 matrix ¥s¥y — Fg has full column rank when at least two
components of a,, = |a,,a,,a,]" are excited.

Proof. To show that F5F; — Fg has full column rank, it is sufficient to show that the determinants of
any combination of 4 rows cannot vanish simultaneously. The mathematica script used to calculate these
determinants is provided in appendix B.1. The following determinants are considered:

det(1,2,3,4) = —16p} p. (. + PIY + 200, G001 — 200247 — 2P{aG0d2 — 2P0 + 240105 + 2P0, 4205)
(P + Pro = 2P0y G0t — 2P12d3 + 2D150d2 — 2P1od5 + 2P1yq1ds + 2P, 424s)

det(1,2,3,7) = 16ply e (pir. + P12 + 2000001 — 200,47 — 2DUo0d2 — 2P0.% + 2P02014s + 21, 0243)
(PUy + Phy + 201260t — 2D1y a1 + 2P1nq1d2 — 2D10G0ds + 2D G243 — 2P1y G3)

det(4,5,6,7) = —16p%y ppw (pLr. + P + 200y Q00 — 200205 — 2P020002 — 290,95 + 2D0.0143 + 2Py 203)
(o + Pl — 20120002 + 270 G102 — 2D10ds + 2Dy G0ds + 2P G103 — 2P10d3)

T

where pi'' = [0,p), 01", p}¥ = [p, 0, 01", Pl = [PUas DUy 00" PY = [prh 0l pre)” and
qY = [q0,q1, 42, q3]". The choice of determinants is governed by the corresponding accelerometer axis
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excitation. Specifically, det(1,2,3,4) corresponds to excitation of {a,,a,}, det(1,2,3,4) corresponds
to excitation of {a,, a,} and det(1,2,3,4) corresponds to excitation of {a,,a.}. Under the conditions
outlined in Lemma (non-collinearity of anchors ¢, 7, k), pyy/ and pkWI cannot be zero. Consider the term:
P = Dh- + Ple + 200,000 — 200201 — 2P0a0002 — 290245 + 2P0 0105 + 2Dy 0203
This term represents the z-coordinate of the position of the mobile radio expressed in the world frame
W. As per Lemmal(l] this cannot be zero. The determinant terms then can be reduced to:
det(1,2,3,4) = pl, + pir — 20}, G001 — 2P147 + 2P1adodz — 2105 + 210103 + 2P}y 23
det(1,2,3,7) = piy, + Py + 20120001 — 201y @; + 2100142 — 2P10q0ds + 2P1- G203 — 2P), 45
det(4,5,6,7) = pl, + Ple — 2D12 0002 + 201 q102 — 2P1ads + 21, q0ds + 2D1L G105 — 2p1ads

The terms on the right hand side can be expressed as:

det(4,5,6,7) .
det(1,2,3,7)| = pl, + R} p}
det(1,2, 3, 4)

If the three determinants are identically zero then:
I wT w _
Py + Ry pr =054
Pre-multipliying by R! and noting that R¥VRY " = I, 3:
T
R} (py + Ry pr) =05
T
R;'py + RI'R} p;) = 050
P! +R;'Pj = 03

However, if p}’ + R}V p}, = 0143 then 6p;jy, is rank deficient and conditions of Lemma l|are violated.
Hence, the three determinants cannot be zero simultaneously. This inturn implies that F5F, — Fg has full
column rank when at least two components of a,,, are excited. [

Lemma 3. For any unit-quaternion q, the 9x3 matrix F13R‘I/V — F15 has full column rank when all three
components of Wy, = |wy, wy,w,|T are excited.

Proof. To show that FlgR}” — Fy5 is full column rank, it is sufficient to show that determinants of any
combination of 3 rows cannot vanish simultaneously. The mathematica script used to compute determi-
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nants is provided in appendix B.2. The following determinants are considered:

det(1,2,4) = p]y fig (40)
det(1,4,5) = 2pr f1 go (41)
det(1,4,8) = ply f1 g3 (42)
det(1,7,2) = p}/g fo o (43)
det(1,7,5) =2 pjy fo g2 (44)
det(1,8,7) = pjy fa g3 (45)
det(2,7,4) = pj, f3 ¢ (46)
det(4,7,5) =2 pjy f3 g2 47)
det(4,7,8) = pj, f3 gs (43)

fi =Dl + DL — 210001 — 201565 + 2p1adod2 — 2D12 05 + 2P1eq1ds + 2p1y42ds

fo = vl + 01y + 201000 — 201,45 + 201102 — 2D10d0ds + 2PY. 4203 — 201,43

fs = Dla + DLy — 201002 + 201,142 — 2p1ads + 21,003 + 201143 — 2p1aG;

91 =Dl + pls + 200,000 — 20065 + 2P1edod2 — 2p12 05 — 2P1eq1ds — 2P0, q203 — 2P1.45 — 2D12q5
92 = Pladods + Pralo® + PU-01G2 — Praqi@z + U903 + Pradods — Plad2ds + Prad2qs

93 = Dliw + Ple — 2002ls — 2010 — 212 G002 — 2P0y, 0102 — 2P1s — 2P0, 4043 — 2P)2 0143 — 2P0405

Terms f1, fo, f3 can be written as:

i :
fa —PU+RW p[
I3

If the three terms are identically zero then:
T
Py + Ry Pl =05
Pre-multipliying by R! and noting that R¥VRY " = I, 3:
T
R} (p; + R} pr) = 031
T
R;'py +R/R]" pl) = 0351
p; + R} pj = 05,

However, if p}¥ + R}V p]; = 0143 then dp;;, is rank deficient and conditions of Lemma are violated.
Hence, f1, f> and f3 cannot vanish simultaneously. Without loss of generality, it is assumed that f; does
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not vanish. With this assumption, the analysis is resitricted to det(1, 2,4), det(1, 4,5) and det(1, 4, 8). Note
that det(1, 2, 4) corresponds to excitation of {w,,w, }, det(1, 4, 5) corresponds to excitation of {w,, w, } and
det(1, 4, 8) corresponds to excitation of {w,, w,, w, }, respectively. Since f; does not vanish and p}/g cannot
be zero (to satisfy the constraint that the anchors be non-collinear as per Lemmal[I]), the only way (40)-({2)
vanish simultaneously is if g1, g» and g3 vanish simultaneously. Using the constraint of a unit-quaternion,
G+ ¢ +¢3 + q2 = 1, Terms g1, g» and g3 can be rearranged to generate a new constraint:
PIL + ho(—20042 + 20103) + Pl (20001 + 2203) + P (a6 — 61 — 6 + ¢3) =0 (49)
This represents the z-coordinate of the position of the mobile radio in the world frame and cannot be
zero as per the constraints of Lemmal(I] Hence, the terms gy, g2 and g5 cannot vanish simultaneously if the
constraints of Lemmal/I] are satisfied. This implies that (40)-(42) cannot be zero simultaneously and hence
F13RY — Fy;5 has full column rank when all three components of w,, = [w,, w,, w.]T are excited. O

Lemma 4. For any unit-quaternion q, the 9x3 matrix ¥;¥3 + F1g has full column rank when all three
components of a,, = |a,,a,,a,]" are excited.

Proof. To show that F5F3 + Fig has full column rank, it is sufficient to show that the determinants of
any combination of 4 rows cannot vanish simultaneously. The corresponding mathematica script used to
compute determinants is provided in appendix B.3. The following determinants are considered:

det(1,2,4) = —pj, fi o (50)

det(1,4,5) = —2 p}/‘; i 92 (51)

det(1,4,8) = p]y f1 93 (52)

det(1,7,2) = —pjy fo 0 (53)

det(1,5,7) = =2 ply f2 go (54)

det(1,8,7) = —pj, f2 93 (55)

det(2,7,4) = —pj, fs o (56)

det(4,7,5) = =2 ply f3 go (57)

det(4,7,8) = —pj, f3 93 (58)
where

fi =Dl + P — 210001 — 201565 + 2D1adod2 — 2D12 05 + 2P1ed1ds + 2p1, 4243

Jo = vl + 01y + 201000 — 201,45 + 20100102 — 2D10 0003 + 2PY. 4203 — 201,43

f3 = Dla + DLa — 201002 + 201, 0142 — 2p1aGs + 21,4003 + 201 143 — 2p1aG;

91 =Dl + Pl + 200,000 — 200-G7 + 2P1dode — 2P12 05 — 2D1e@1as — 2P0y G203 — 2P0.45 — 2D1eq3

92 = Pla@oqi + PaGo@ + PLaqiGe — Preqide + DPi.Qods + Prhdods — Plrededs + Pladaqs

93 = Dliw + Ple — 2002ls — 2010 — 212 G002 — 2P0y, 0102 — 2P1s — 2P0, G043 — 2P)o01q3 — 2P1.05
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Terms f1, fo, f3 can be written as:

Ji I wT_w
fo| =Py + R} pr
/3

If the three terms are identically zero then:
I wT w _
Py + R pr =034
Pre-multipliying by R! and noting that R¥VRY " = I, 3:

T
R} (p, + R} p}) =035

T
R}p/ +R'R}" p}) = 031
p; +R}pl =035

However, if p}’ + R} p{; = 013 then dp;;;, is rank-deficient and conditions of Lemma [1|are violated.
Hence, f1, f> and f3 cannot vanish simultaneously. Without loss of generality, it is assumed that f; does
not vanish. With this assumption, the analysis is resitricted to det(1, 2,4), det(1, 4, 5) and det(1, 4, 8). Note
that det(1, 2, 4) corresponds to excitation of {a, a, }, det(1,4, 5) corresponds to excitation of {a,, a, } and
det(1,4, 8) corresponds to excitation of {a,, a,, a.} respectively. Since f; does not vanish and p};’ cannot
be zero (to satisfy the constraint that the anchors be non-collinear as per Lemmal/[I)), the only way (50)-(52)
vanish simultaneously is if g, g» and g3 vanish simultaneously. Using the constraint of a unit- quaternion,
Q@+ ¢} + @3 + ¢3 = 1, the terms gy, g» and g3 can be rearranged to generate a new constraint:

PIL + Dl (—20042 + 2103) + Pl (20001 + 20203) + Pl (a6 — ¢ — @5 + ¢3) = 0. (59)

This represents the z-coordinate of the position of the mobile radio in the world frame and cannot be
zero as per constraints of Lemma [I} Hence the terms ¢;, g» and g3 cannot vanish simultaneously if the
constraints of Lemmal/I] are satisfied. This implies that (50)-(52) cannot be zero simultaneously and hence
F;F; + Fig has full column rank when all three components of a,,, = [a,, a,, a,]” are excited. O
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B Mathematica scripts

B.1 Script|

p = {px, py, Pz} ;
{vx, vy, vz} ;
{90, q1, g2, q3} ;

{bax, bay, baz};

q
ba

bw = {bwx, bwy, bwz} ;

pt = {ptx, pty, ptz};

R = {{q022 + q1*2 - q272 - q372, 2*xql*xqg2 - 2*xqO0*xq3, 2%¥qO*q2 + 2% ql*q3},

{2%¥9q0*q3 + 2%¥ql*qg2, qO0*2-ql*2 + q272 - 372, 2*q2*q3 - 2*qO % ql},

{2%*ql*q3 - 2*qO*q2, 2*qO*ql + 2*xg2*q3, qO0*2 - q1l72 - q2"2 + q372}};

pwp = {0, 0, 0};

pwq = {0, pwqy, 0};

pwr = {pwrx, pwry, 0};

state = Join[p, v, q, ba, bw, pt];
zv = {0, 0, 0};
zm = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
zm4 = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
g = {0, 0, 9.8};
Xi = {{-q1, -q2, -q3},
{90, -q3, q2},
{a3, qo0, -qi},
{-92, q1, qO}};

fo
fl
f2

Join[v, -R.ba - g, -0.5 % Xi.bw, zv, zv, zv];

Join[zm, R, zm4, zm, zm, zm];

Join[zm, zm, 0.5% Xi, zm, zm, zm];

deltapwp

pwp = R.pt-p;
pwq = R.pt-p;
deltapwr = pwr - R.pt-p;

deltapwq

Loy = 0.5 »{deltapwp.deltapwp, deltapwq.deltapwq, deltapwr.deltapwr};
gradLOy = D[LOy, {state}];

L1foy = Rationalize[gradLoy.f0];
gradL1foy = D[L1foy, {state}];

LifiLifoy Rationalize[gradL1ifoy.f1];

gradL1fiL1foyl = D[L1fiL1foy[[All, 1]], {state}];

gradL1fiLifey2 = D[L1f1iL1fOy[[All, 2]], {state}];

gradL1fiL1fey3 = D[L1fiL1foy[[All, 3]], {state}];

gradL1fiL1ifey = Join[gradL1fiLifeyl, gradL1fliL1fey2, gradL1f1iL1fOy3];



2 rot_mat.nb

Fo = D[R.pt, {a}];

F5 = gradL1iflLifoy[[All, 1 ;; 3]];
F6 = gradLifiLifey[[All, 7 ;; 10]];
F7 = gradLifiLifoy[[All, 17 ;3 19]];

mat = F5.F0 - F6;

tl = Simplify[Det[mat[[{1, 2, 3, 4}, All]]]l, 9q0*2 + q172 + 272 + q372 =
t2 = Simplify[Det[mat[[{1, 2, 3, 7}, All]]l]l, 90"2 + q1"2 + q272 + q3"2
t3 = Simplify[Det[mat[[{4, 5, 6, 7}, All]]]l, q0*2 + q172 + q272 + 372



B.2 Scriptli

{px, py, pz};
{vx, vy, vz} ;

q = {q9, q1, 92, q3} ;

o
n

ba = {bax, bay, baz};
bw = {bwx, bwy, bwz} ;
pt = {ptx, pty, ptz};

R = {{q0"2 + q122 - q272 - q3"2, 2*xql*xq2 - 2*xqO0*xq3, 2x¥qO*q2 + 2*ql*q3},
{2%¥9q0%*q3 + 2%¥ql*xqg2, q0"2-ql72 + q2"2 - q3"2, 2%xq2*q3 - 2% qO % ql},
{2%*ql*q3 - 2*qO*q2, 2*qO*ql + 2*xg2*q3, qO*2 - q1l72 - 272 + q372}};
pwp = {0, 0, 0};
pwq = {0, pwqy, 0};
pwr = {pwrx, pwry, 0};

state = Join[p, v, q, ba, bw, pt];
zv = {0, 0, 0};
zm = {{0, 0, 0}, {0, 0, 0}, {0, O, O}};
zm4 = {{0, 0, 0}, {0, 0, 0}, {0, 0, O}, {0, O, O}};
g = {0, 0, 9.8};
Xi = {{-q1, -q2, -q3},
{90, -q3, q2},
{a3, q0, -qi},
{-a92, q1, q@}};

fo
f1
f2

Join[v, -R.ba - g, -0.5 % Xi.bw, zv, zv, zv];

Join[zm, R, zm4, zm, zm, zm];

Join[zm, zm, O@.5% Xi, zm, zm, zm];

deltapwp

pwp - R.pt-p;
pwq - R.pt-p;
deltapwr = pwr - R.pt-p;

deltapwq

Loy = 0.5 % {deltapwp.deltapwp, deltapwq.deltapwq, deltapwr.deltapwr};
gradLoy = D[LOy, {state}];

FoO
F3

D[R.pt, {q}];
1/2%F0.X1;

L1f2LefOy = Rationalize[gradLOy.f2];

gradL1f2Lefoyl = D[L1f2LOfOy[[All, 1]], {state}];

gradL1f2Lefey2 = D[L1f2L0fOy[[All, 2]], {state}];

gradL1f2Lefey3 = D[L1f2L0fOy[[All, 3]], {state}];

gradL1f2Lefoy = Join[gradL1f2L0fOyl, gradL1f2LOfOy2, gradL1f2L0f0Oy3];



2 lever_arm_mat.nb

-n
[
w
]

gradLif2Lefoy[[All, 1 ;; 3]];
gradLif2Lefoy[[All, 17 ;; 19]];
matl = F13.R - F15;

-n
[
(&}
1]

Factor[Simplify[Simplify[Det[matl[[{1, 2, 4}, ALl]lll, 90”2 + q172 + q2"2 + q37*2 == 1]]
Factor[Simplify[Simplify[Det[matl[[{1, 4, 5}, ALl]]ll, q0*2 + q1*2 + q272 + q3"2 == 1]]
Factor[Simplify[Simplify[Det[matl[[{1, 4, 8}, ALl]lll, 90”2 + q172 + q2"2 + q3"*2 == 1]]
Factor[Simplify[Simplify[Det[matl[[{1, 7, 2}, ALl]]ll, 90”2 + q172 + q2"2 + q37*2 == 1]]
Factor[Simplify[Simplify[Det[matl[[{1, 7, 5}, All]lll, 90”2 + q172 + 2”2 + q372 == 1]]
Factor[Simplify[Simplify[Det[matl[[{1, 8, 7}, ALl]lll, 90”2 + q172 + q2"2 + q37*2 == 1]]
Factor[Simplify[Simplify[Det[mat1[[{2,
Factor[Simplify[Simplify[Det[matl[[{4,
Factor[Simplify[Simplify[Det[matl[[{4,

~

4}, ALIll, 9922 + q172 + q272 + q312 == 1]]
5}, AlUll, 9072 + q1*2 + q272 + q372 == 1]]
8}, All]lll, 9072 + q172 + q2722 + q3"2 == 1]]

~ ~

Factor[Simplify[Simplify[Det[matl[[{1, 2, 4}, All]]l]l, 9q0*2 + q17*2 + q272 + q3*2 == 1]] /.
{ptz+pz—2py q0q1-2pzq12+2pxq0q2—2pzq22+2pxq1q3+2py q2q3 = 1, pwqy = 1}
h2 = Factor[Simplify[Simplify[Det[matl[[{1, 4, 5}, AL,
qoAr2 + ql”22 + q272 + q372 == 1]] /.
{ptz+pz—2py q0q1—2pzq12+2pxq0q2—2pzq22+2pxq1q3+2py q2q93 = 1, pwqy = 1}
h3 = Factor[Simplify[Simplify[Det[matl[[{1, 4, 8}, AL1]ll],
qoA2 + ql”r2 + q222 + q372 == 1]] /.
{ptz+pz—2py q0q1—2pzq12+2pxq0q2—2pzq22+2pxq1q3+2py q2q3 = 1, pwqy = 1}
h4=q0"2+ql*2+q2"2+q372;
Rest[
Eliminate[{hl == 0, h2 == 0, h3 == 0, h4 == 1}, {px, py}] /. {And - List, Equal - Subtract}];
h5 = Collect[First@%, {pz, ptx, pty, ptz}, Simplify] /.
(1-29172-2q272) > Simplify[l-2q1*2-2qg2"2-(1-h4)]



B.3 Scriptlll

{px, py, pz};
{vx, vy, vz} ;

q = {q9, q1, 92, q3} ;

T
n

ba = {bax, bay, baz};
bw = {bwx, bwy, bwz} ;
pt = {ptx, pty, ptz};

R = {{q0"2 + q1l722 = q222 - q3722, 2*xql*q2 - 2*%q0*xq3, 2*qO0*xqg2 + 2*xql*q3},
{2%¥9q0%*q3 + 2%¥ql*xqg2, q0"2-ql72 + q2"2 - q3"2, 2%xq2*q3 - 2% qO % ql},
{2%*ql*q3 - 2*qO*q2, 2*qO*ql + 2*xg2*q3, qO*2 - q1l72 - 272 + q372}};
pwp = {0, 0, 0};
pwq = {0, pwqy, 0};
pwr = {pwrx, pwry, 0};

state = Join[p, v, q, ba, bw, pt];
zv = {0, 0, 0};
zm = {{0, 0, 0}, {0, 0, 0}, {0, O, O}};
zm4 = {{0, 0, 0}, {0, 0, 0}, {0, 0, O}, {0, O, O}};
g = {0, 0, 9.8};
Xi = {{-q1, -q2, -q3},
{90, -q3, q2},
{a3, q0, -qi},
{-a92, q1, q@}};

fo
f1
f2

Join[v, -R.ba - g, -0.5 % Xi.bw, zv, zv, zv];

Join[zm, R, zm4, zm, zm, zm];

Join[zm, zm, O@.5% Xi, zm, zm, zm];

deltapwp

pwp - R.pt-p;
pwq - R.pt-p;
deltapwr = pwr - R.pt-p;

deltapwq

Loy = 0.5 % {deltapwp.deltapwp, deltapwq.deltapwq, deltapwr.deltapwr};
gradLoy = D[LOy, {state}];

L1fOoy = Rationalize[gradLOy.f0];
gradL1foy = D[L1foy, {state}];
deltapijk = gradL1ifoy[[All, 4 ;; 6]];
deltapijkF = gradL1foy[[All, 14 ;; 16]];

FoO
F3

D[R.pt, {q}];
1/ 2% F0.Xi;
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L1fiL1fOy = Rationalize[gradL1foy.f1];
gradL1flL1feyl = D[L1f1L1fey[[All, 1]], {state}];

gradL1fiLifey2 = D[L1f1iL1fOy[[All, 2]], {state}];
gradL1fiL1fey3 = D[L1f1L1foy[[All, 3]], {state}];
gradL1fiLifey = Join[gradL1fiLifeyl, gradL1flL1fey2, gradL1f1lL1fOy3];

L1foL1fiLeofoy = Rationalize[gradLlfiLifoy.f0];
gradL1foL1f1Lefoy = D[L1feL1flLefoy, {state}];
F5 = gradLifoLifiLofoy[[All, 4 ;; 6]];

F18 = gradL1feL1fiLefoy[[All, 14 ;; 16]];

Ftest = F5.F3 + F18;

hl =
Factor[Simplify[Simplify[Det[Ftest[[{1, 2, 4}, AL]]l]l, 902 + q172 + q272 + q3"2 == 1]] /.
{ptz+pz-2py q0q1-2pzq12+2pxq0q2—2pzq22+2pxq1q3+2py q2q3 = 1, pwqy = 1}
h2 = Factor[Simplify[Simplify[Det[Ftest[[{1, 4, 5}, ALll]lll,
q0A2 + ql”2 + q2722 + q372 == 1]] /.
{ptz+pz—2py q0q1—2pzq12+2pxq0q2—2pzq22+2pxq1q3+2py q2q3 =» 1, pwqy = 1}
h3 = Factor[Simplify[Simplify[Det[Ftest[[{1, 4, 8}, ALl]]ll,
q0r2 + q1l72 + q2722 + q372 == 1]] /.
{ptz+pz—2py q0q1—2pzq12+2pxq0q2—2pzq22+2pxq1q3+2py q2q9q3 =» 1, pwqy = 1}
Factor[Simplify[Simplify[Det[Ftest[[{1, 7, 2}, All]]ll, 9q0*2 + q17*2 + q2*2 + q3*2 == 1]] /.
{pty+py+2pzq0q1-2py q12+2pxq1q2-2pxq0q3+2pzq2q3—2py q32 =1, pwqy = 1}
Factor[Simplify[Simplify[Det[Ftest[[{1, 7, 5}, All]]ll, q0*2 + q17*2 + q2*2 + q3*2 == 1]] /.
{-pty—py—2pzq0q1+2py q12—2pxq1q2+2pxq0q3—2pzq2q3+2py q32 -1, pwqy = 1}
Factor[Simplify[Simplify[Det[Ftest[[{1, 8, 7}, ALl]]]l, 9q0*2 + q172 + q2"2 + q372 == 1]] /.
{pty+py+2pzq0q1—2py q12+2pxq1q2—2pxq0q3+2pzq2q3—2py q32 -1, pwqy = 1}
Factor[Simplify[Simplify[Det[Ftest[[{2, 7, 4}, AlLl]]l]l, q0"2 + q17*2 + gq2*2 + q3*2 == 1]] /.
{ptx+px—2pzq0q2+2py q1q2—2pxq22+2py q(9q3+2pzq1q3—2pxq32 =1, pwqy = 1}
Factor[Simplify[Simplify[Det[Ftest[[{4, 7, 5}, All]]ll, q0~2 + q17*2 + q2*2 + q3*2 == 1]] /.
{ptx+px-2pzq0q2+2py qlq2-2pxq2°+2py q0q3+2pzqlq3-2pxq3% > 1, pwqy - 1}
Factor[Simplify[Simplify[Det[Ftest[[{4, 7, 8}, AlLl]]ll, q0*2 + q1”*2 + gq2*2 + q3*2 == 1]] /.
{ptx+px—2pzq0q2+2py q1q2-2pxq22+2py q0q3+2pzq1q3—2pxq32 -1, pwqy = 1}
h4=q0"2+ql*"2+q2"2+q3"2;
Rest[
Eliminate[{hl == 0, h2 == 0, h3 == 0, h4 == 1}, {px, py}] /. {And = List, Equal - Subtract}];
h5 = Collect[First@%, {pz, ptx, pty, ptz}, Simplify] /.
(1-29172-2q272) > Simplify[l-2q172-2qg2"2-(1-h4)]
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