
AI2 : Training a big data machine to defend

Kalyan Veeramachaneni
CSAIL, MIT Cambridge, MA

Ignacio Arnaldo
PatternEx, San Jose, CA

Alfredo Cuesta-Infante, Vamsi Korrapati, Costas Bassias, Ke Li
PatternEx, San Jose, CA

Abstract
We present an analyst-in-the-loop security system,
where analyst intuition is put together with state-
of-the-art machine learning to build an end-to-end
active learning system. The system has four key
features: a big data behavioral analytics platform,
an ensemble of outlier detection methods, a mech-
anism to obtain feedback from security analysts,
and a supervised learning module. When these four
components are run in conjunction on a daily basis
and are compared to an unsupervised outlier detec-
tion method, detection rate improves by an average
of 3.41×, and false positives are reduced fivefold.
We validate our system with a real-world data set
consisting of 3.6 billion log lines. These results
show that our system is capable of learning to de-
fend against unseen attacks.

1 Introduction
Today, information security solutions generally fall into two
categories: analyst-driven, or unsupervised machine learn-
ing-driven. Analyst-driven solutions rely on rules determined
by fraud and security experts, and usually lead to high rates
of undetected attacks (false negatives), as well as delays be-
tween attack detection and implementation of preventative
countermeasures. Moreover, bad actors often figure out cur-
rent rules, and design newer attacks that can sidestep detec-
tion.

Using unsupervised machine learning to detect rare or
anomalous patterns can improve detection of new attacks.
However, it may also trigger more false positive alarms and
alerts, which can themselves require substantial investigative
efforts before they are dismissed. Such false alarms can cause
alarm fatigue and distrust, and over time, can cause reversion
to analyst-driven solutions, with their attendant weaknesses.

We identified three major challenges facing the informa-
tion security industry, each of which could be addressed by
machine learning solutions:

Lack of labeled data: Many enterprises lack labeled ex-
amples from previous attacks, undercutting the ability to
use supervised learning models.

Constantly evolving attacks: Even when supervised learn-
ing models are possible, attackers constantly change
their behaviors, making said models irrelevant.

Limited investigative time and budget: Relying on ana-
lysts to investigate attacks is costly and time-consuming.

A solution that properly addresses these challenges must
use analysts’ time effectively, detect new and evolving attacks
in their early stages, reduce response times between detec-
tion and attack prevention, and have an extremely low false
positive rate. We present a solution that combines analysts’
experience and intuition with state-of-the-art machine learn-
ing techniques to provide an end-to-end, artificially intelli-
gent solution. We call this system AI2. AI2 learns and au-
tomatically creates models that, when executed on new data,
produce predictions as intelligent as those deduced by human
analysts. Backed by big data infrastructure, we achieve this
in close to real time.

Our contributions through this paper are as follows:
1. Developed an Active Model Synthesis approach, which:

(a) computes the behaviors of different entities within
a raw big data set,

(b) presents the analyst with an extremely small set of
events (k <<< N), generated by an unsupervised,
machine learning-based outlier detection system,

(c) collects analyst feedback (labels) about these
events,

(d) learns supervised models using the feedback,
(e) uses these supervised models in conjunction with

the unsupervised models to predict attacks, and
(f) continuously repeats steps (a) - (e).

2. Designed multivariate methods that are capable of mod-
eling the joint behaviors of mixed variable types (nu-
meric and discrete ordinal). These methods include
density-based, matrix decomposition-based, and repli-
cator neural networks.

3. Demonstrated performance of the AI2 system by mon-
itoring a web-scale platform that generated millions of
log lines per day over a period of 3 months, for a total of
3.6 billion log lines.

Summary of results: In Figure 1, we present a snapshot of
our system’s progress after 12 weeks of use. With 3 months’
worth of data, and with awareness of attacks, we evaluate

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

K (Daily investigation budget)

R
ec

al
l

Unsupervised-ML
AI2

(a) Recall versus daily investigation budget

0 0.05 0.1 0.15 0.2 0.25
0.0

0.2

0.4

0.6

0.8

1.0

False Positive Rate

R
ec

al
l

Unsupervised-ML
AI2

(b) Recall versus false positive rate

Figure 1: Recall versus bandwidth and recall versus false positive rate of the Active Model Synthesisand unsupervised outlier
analysis after 3 months of deployment.

whether our solution can improve attack detection rates (re-
call) while reducing the number of alerts shown to the analyst
(“daily investigation budget” k).
Using analyst time effectively: The AI2 system achieves a
detection rate of 86.8% even at an extremely low daily inves-
tigative budget of k = 200 events. This represents more than
tenfold improvement1 over the unsupervised outlier detection
approach rate, which is 7.9%. Fixing the daily investigation
budget at 200 keeps the false positive rate at 4.4%.
Reducing false-positives by a factor 5: If we allow for an
higher daily investigative budget (for example, up to 1000),
the unsupervised outlier detection based method can still only
achieve a 73.7% detection rate, and the false positive rate is
> 22%. AI2 achieves > 86% for a false positive rate of 4.4%
a reduction by factor of 5.
On our choice of the title “Training a big data machine
to defend”: We define a big data system or machine as a
software infrastructure that is able to ingest data in real time,
compute and generate quantities that can then be analyzed,
either by data scientists or a machine learning system. A ma-
chine learning substrate that sits on top of this system can
analyze the data and automatically produce outliers. We pro-
vide a system that collects and incorporates analyst feedback,
generates, and uses these models continuously without any
involvement from its original developers - that is us. Thus,
we are able to deliver a fully automatic system that could be
trained by analysts.

In Section 2, we present an overview of the system, and
the challenges encountered while building it. Section 3 sum-
marizes related work in this area and Section 4 describes the
data analyzed by our platform. In Section 5 we present the
big data platform for behavioral analytics. Section 6 presents
the outlier detection system. With the two key components
in place, Section 7 presents the active model synthesis frame-
work. Section 8 presents the experimental setup and the re-
sults achieved. Section 9 presents our key findings and con-
clusions.

1This result corresponds to the 12th and last week of deployment
while the 3.41× improvement claimed in the abstract is the average
improvement over the 12 weeks.

2 AI2

In this paper, we present an end-to-end system that learns
over time thanks to feedback from security analysts. Figure 2
presents a schematic of our system, which is made up of the
following components:
• Big data processing system: A platform that can quan-

tify the behaviors (a.k.a features) of different entities,
and compute them from raw data. With high-volume,
high-velocity data, this first component requires process-
ing at a challenging scale. We describe this system and
what it accomplishes in Section 5
• Outlier detection system: This system learns a descrip-

tive model of those features extracted from the data
via unsupervised learning, using one of three methods:
density, matrix decomposition, or replicator neural net-
works. To achieve confidence and robustness when de-
tecting rare and extreme events, we fuse multiple scores
into a final score that indicates how far a certain entity
or event is from others. These methods are described in
detail in Section 6.
• Feedback mechanism and continuous learning: This

component incorporates analyst input through a user in-
terface. It shows the top k outlier events or entities, and
asks the analyst to deduce whether or not they are ma-
licious. This feedback is then fed into the supervised
learning module. The value of k and the feedback fre-
quency (e.g. daily or weekly) are both decided by the
end user.
• Supervised learning module: Given the analyst’s feed-

back, the supervised learning module learns a model that
predicts whether a new incoming event is normal or ma-
licious. As more feedback is gathered, the model is con-
stantly refined.

3 Related Work
Our work exploits ideas from a wide range of fields, including
outlier analysis, ensemble learning, active learning, informa-
tion security, behavioral analytics, and big data computing.

Outlier analysis methods have been reviewed in Hodge and
Austin [2004], Chandola et al. [2009] and Aggarwal [2013a].
Our platform integrates outlier detection methods based on

Unsupervised
Learning

Ranking
and selection

Attack Label
Labeled
examples

for learning

Feedback

ID
144
22

3069
..

Supervised
Learning

Features m

n

Historic labeled
data

Figure 2: AI2. Features describing the entities in the data set are computed at regular intervals from the raw data. An unsuper-
vised learning module learns a model that is able to identify extreme and rare events in data. The rare events are ranked based
on a predefined metric, and are shown to the analyst, who labels them as ’normal’ or as pertaining to a particular type of attack.
These ”labels” are provided to the supervised learning module, which produces a model that can then predict, from features,
whether there will be attacks in the following days.

Principal Component Analysis (Shyu et al. [2003]), neural
networks (Hawkins et al. [2002]; Scholz and Vigário [2002];
Scholz et al. [2008]), and statistical models.

Ensemble learning can enhance the robustness of out-
lier analysis (Schubert et al. [2012]; Aggarwal [2013b];
Zimek et al. [2014]). This approach has received attention
only recently, due to two main constraints: first, it is diffi-
cult to interpret and compare outlier scores retrieved with dif-
ferent methods (Gao and Tan [2006]; Kriegel et al. [2011]),
and second, it is difficult to weight confidence in different
methods, since there is no ground truth that can be used for
learning. In fact, most works assume a semi-supervised set-
ting, where a set of labels is initially available (Micenková et
al. [2014]).

The active learning framework (Seung et al. [1992]) has
been applied to the outlier analysis task in the past (Pelleg
and Moore [2004]; Abe et al. [2006]). In these works, the
most ambiguous examples are shown to the user for labeling.
This approach is in line with the uncertainty sampling method
introduced in Lewis and Catlett [1994].

Behavioral predictive analytics have shown promising re-
sults for network intrusion (Yen [2011]) and internal threat
detection (Senator et al. [2013]). However, to the best of our
knowledge, we present the first big data security system capa-
ble of detecting threats in real time, and of collecting analysts’
feedback to improve detection rates over time.

4 Data characteristics
In this section, we present the typical characteristics of the
data ingested by our platform (also summarized in Table 1).
Data sources and applications: Our platform processes both
web logs and firewall logs. In a typical enterprise system,
these logs are delivered in real, streaming time from widely
distributed data sources. Web log analysis is aimed at the
detection of web attacks, while mining firewall logs allows
us to prevent data ex-filtration in enterprise setups.

Application Web attacks
prevention

Data exfiltration
prevention

Source Web logs Firewall logs

Log lines (per day) 20M-200M 20M-200M

Unique entities
(per day)

100K-10M 10K-5M

Malicious entities
(per day)

0-100K 0-500

Concurrent active
entities (per minute)

50-50K 50-10K

Table 1: Summary of the characteristics of the data ingested
by our platform. The provided ranges are defined according
to the values seen at the different enterprise setups where our
platform has been deployed.

Data dimensions and unique entities: The computational
effort associated with analyzing data can be reasonably esti-
mated by the data size and the number of unique entities. The
first refers to the volume of the raw data, and is generally re-
ported in the form of size metrics (GB, TB) and/or number of
log lines (for instance, a midsized enterprise platform easily
generates tens of millions of log lines on a daily basis). The
second is specific to behavioral analytics, and corresponds to
the number of unique entities (IP addresses, users, sessions,
etc) analyzed on a daily basis.

The data set used in this paper corresponds to three
months’ worth of logs, generated by an enterprise platform.
This platform records millions of log lines per day, each cor-
responding to a specific user interaction, and has hundreds of
thousands of daily active users. Table 1 presents the typical
ranges we see in our current use cases.
Malicious activity prevalence: Under normal circum-
stances, malicious activities are extremely rare in an enter-

0 2 4 6 8 10 124 · 10−4

6 · 10−4

8 · 10−4

1 · 10−3

1.2 · 10−3

1.4 · 10−3

1.6 · 10−3

Week

R
at

io
of

m
al

ic
io

us
us

er
s

Figure 3: Weekly ratio of reported malicious users to the total
number of active users.

prise setup. Attack cases represent a minor fraction of total
events (generally < 0.1%). To illustrate this fact, Figure 3
shows the ratio of reported malicious users to the total num-
ber of active users in the studied dataset. Three additional
observations are worth remarking on:
• This dearth of malicious activity results in extreme class

imbalance when learning a supervised model, and in-
creases the difficulty of the detection process.
• It is safe to assume that not all malicious activities are

systematically reported, either because their incident re-
sponses were inconclusive, or because they were not de-
tected in the first place. This introduces noise into the
data, since unreported attacks will be considered legiti-
mate activity.
• Attack vectors can take a wide variety of shapes. Even

when malicious activities are reported, we are not al-
ways aware of the specific vectors involved. Thus ,it is
important to develop robust defense strategies that are
capable of detecting as many attacks as possible.

ok

5 BigData platform for behavioral analytics
Our approach rests on the computation of behavioral descrip-
tors for different entities, such as IP addresses, users, or ses-
sions. These entities can be independent or connected; for
instance, the same IP address may be associated with two or
more users.

5.1 Behavioral signatures
A typical attack has a behavioral signature, which comprises
the series of steps involved in committing it. The informa-
tion necessary to quantify these signatures is buried deep in
the raw data, and is often delivered as logs. These quantita-
tive values can be specified by security experts, and generally
correspond to indicators an expert would use to investigate
an attack. Also known as variables or features in the field of
machine learning, they are usually extracted on a per-entity,
per-time-segment basis. Using the platform, we calculate a
total of 24 variables per user per day. Take, for example, the
per-user behavioral features shown in Figure 4. A platform
capable of computing behavioral features in real time is it-
self valuable, since it allows analysts to monitor applications
more dynamically.

5.2 Design requirements
A big data system for real-time behavioral analytics on web-
scale applications must meet the following criteria:

1. Capable of analyzing the behavior of 10+ million enti-
ties on a daily basis.

2. Capable of updating and retrieving the behavioral signa-
tures of active entities, on demand and in real time. The
platform needs to be able to retrieve behavioral signa-
tures for up to 50 thousand entities at once.

In the following section, we describe the key aspects that
enable our big data system to process logs from many data
sources, extract entities, transform raw logs into features, and
keep these features up-to-date in real time. The system is de-
signed to horizontally scale, in order to address billions of log
lines per day.

5.3 From raw logs to behaviors in real time
To calculate behavioral features for one user over a partic-
ular time segment, one must isolate all relevant historic log
lines and perform the aggregations that feature definition de-
mands—for example, aggregating the money this user spent
during that time segment. This process must be repeated for
all the active users, populating the entity-feature matrix as
shown on the right hand side of Figure 4. Such computations
are challenging because of high volume, distributed storage
of data, and the need to aggregate over historical data to com-
pute the feature. We address this challenge by breaking the
extraction of features into two processes: Activity Tracking
and Activity Aggregation.
Activity Tracking: As the system absorbs the log stream
generated by the platform, it identifies the entities involved
in each log line (e.g. IP address, user, etc.) and updates the
corresponding activity records. These activity records are cal-
culated and stored according to two guidelines:

1. A very short temporal window. In our experiments, the
temporal window over which these activity records are
computed and stored is one minute. This way, we can
compute behavioral features for different time intervals
- 30 minutes, 1 hr, 12 hrs and 24 hrs. This allows flexi-
bility in analysis.

2. A design streamlined toward efficient retrieval of the
user data necessary for feature computation. Note that,
depending on the definition of the feature, aggregating
activity records for a larger time window can require
anything from simple counters to complex data struc-
tures.

To elaborate on this second guideline, we show 5 cate-
gories of behavioral features, and discuss appropriate struc-
tures for efficient data retrieval and aggregation for each cat-
egory:
• Counts, averages, and standard deviations: these three

metrics can be derived from simple counters. For ex-
ample: the number of successful logins over the last 24
hours.
• Indicators (or boolean variables): Aggregating indica-

tors is also straightforward and requires no additional
data structures. For example: whether at least one ad-
dress verification failed over the last 24 hours.

• Relational features: these features are calculated using
data at the intersection of two entities. For example:
the maximum outlier score given to an IP address from
which the user has accessed the website. To compute
these features efficiently, we build graphs that represent
relations between entities in the system.
• Temporal behaviors: these variables capture the time

elapsed between two or more events, and therefore must
be analyzed in chronological order. For example: the
minimum time from login to checkout). Computing these
features requires timestamping all the relevant events (in
this case, logins and checkouts), and comparing the time
elapsed between consecutive events.
• Unique values: This kind of feature cannot be computed

with counters, since duplicated values must be kept track
of. We use a dictionary to maintain a set of unique values
of the feature, and update it every time new user activity
is analyzed. For example: number of different locations
from which a user has accessed the website over the last
24 hours.

Activity aggregation: Computing behavioral features over
an interval of time requires two steps:

1. Retrieve all activity records that fall within the given in-
terval. Note that, for the purposes of this study, we con-
sider behavioral descriptors that have been aggregated
over 24 hours and end at the time of the last user ac-
tivity. This can be graphically represented as a rolling
24-hour window for feature computation.

2. Aggregate minute-by-minute activity records as the fea-
ture demands. Again, this aggregation step depends on
the feature type. In the simplest case, counters, one must
merely add all the minute-by-minute values together.
The more complex case of unique values requires re-
trieving the unique values of the super set formed by the
minute-by-minute sets.

Performance considerations: Because the temporal scope
of our activity records is 1 minute, we can aggregate records
and compute features for flexible time intervals. However,
this strategy can result in poor performance. For instance,
in the worst case, to compute features over a 24-hour win-
dow, we need to retrieve and aggregate 24×60 (minute
records)=1440 records. This process has to repeat for mil-
lions of entity instances.

To improve retrieval and aggregation performance, we
maintain activity records with different, overlapping time
scopes. In particular, we maintain records on:

• a minute-by-minute basis (starting on the dot),
• an hourly basis (starting on the dot),
• a daily basis (starting at midnight), and
• a weekly basis (starting Sunday at midnight).

This way, if we need to compute features for long inter-
vals, our record retrieval and aggregation requirements re-
main bounded and satisfy real-time requirements. For exam-
ple, with this strategy, the computation of features over the
previous 24 hours requires the retrieval and aggregation of no
more than 23(hour records)+60(minute records)=83 records.

6 Outlier detection methods
The use of outlier analysis is motivated by the observation
that attacks are rare and exhibit distinctive behavior. We com-
bine three unsupervised outlier detection techniques:

6.1 Matrix Decomposition-based outlier analysis
Key idea: Outlier detection methods based on matrix de-
composition use Principal Component Analysis to find cases
that violate the correlation structure of the main bulk of the
data (Shyu et al. [2003]). To detect these rare cases, PCA-
based methods analyze the projection from original variables
to the principal components’ space, followed by the inverse
projection (or reconstruction) from principal components to
the original variables (see Figure 5). If only the first prin-
cipal components (the components that explain most of the
variance in the data) are used for projection and reconstruc-
tion, we ensure that the reconstruction error will be low for
the majority of the examples, while remaining high for out-
liers. This is because the first principal components explain
the variance of normal cases, while last principal components
explain outlier variance (Aggarwal [2013a]).

Let X be a p-dimensional dataset. Its covariance matrix
Σ can be decomposed as: Σ = P × D × PT , where P
is an orthonormal matrix where the columns are the eigen-
vectors of Σ, and D is the diagonal matrix containing the
corresponding eigenvalues λ1 . . . λp. Graphically, an eigen-
vector can be seen as a line in 2D space, or a plane in higher-
dimensionality spaces, while its corresponding eigenvalue in-
dicates how much the data is stretched in that direction.

Note that, at this stage, it is common practice to sort the
columns of the eigenvector matrix P and eigenvalue matrix
D in order of decreasing eigenvalues. In other words, the
eigenvectors and their corresponding eigenvalues are sorted
in decreasing order of significance (the first eigenvector ac-
counts for the most variance, the second for the second-most,
etc.).

The projection of the dataset into the principal component
space is given by Y = XP . Note that this projection can be
performed with a reduced number of principal components.
Let Y j be the projected dataset using the top j principal com-
ponents: Y j = X × P j . In the same way, the reverse pro-
jection (from principal component space to original space) is
given byRj = (P j×(Y j)T)T , whereRj is the reconstructed
dataset using the top j principal components. This process is
schematically depicted in Figure 5.

We define the outlier score of point Xi = [xi1 . . . xip] as:

score(Xi) =

p∑
j=1

(|Xi −Rji |)× ev(j) (1)

ev(j) =

j∑
k=1

λk

p∑
k=1

λk

(2)

Note that ev(j) represents the percentage of variance ex-
plained with the top j principal components. As mentioned
above, eigenvalues are sorted in decreasing order of signifi-
cance; therefore, ev(j) will be monotonically increasing. This

M
on

ey
 s

pe
nt

N
um

be
r

of
 it

em
s

bo
ug

ht

N
ew

 u
se

r?

C
ha

ng
ed

 p
as

sw
or

d?

C
ha

ng
ed

 e
m

ai
l?

C
ha

ng
ed

 a
dd

re
ss

?

{
 "username": "Jane"
 "ip": "128.21.221.13",
 "agent": "Mozilla/5.0 ...",
 "page": "https://mitx.mit.edu/...",
 "time": "11252015:5.40PM"
 ...
}

{
 "username": "Jane"
 "ip": "128.21.221.13",
 "agent": "Mozilla/5.0 ...",
 "page": "https://mitx.mit.edu/...",
 "time": "11252015:5.40PM"
 ...
}

{
 "username": "Jane"
 "ip": "128.21.221.13",
 "agent": "Mozilla/5.0 ...",
 "page": "https://mitx.mit.edu/...",
 "time": "08252015:11.12AM"
 ...
}

.....

.....

{
 "username": "John"
 "ip": "164.28.233.15",
 "agent": "Mozilla/5.0 ...",
 "page": "https://mitx.mit.edu/...",
 "time": "091252015:9.32AM"
 ...
}

{
 "username": "Smith"
 "ip": "168.61.221.13",
 "agent": "Mozilla/5.0 ...",
 "page": "https://mitx.mit.edu/...",
 "time": "121152015:10.03AM"
 ...
}

Day

Day

Week

Month ...

... Features
Jane

Figure 4: Extracting behavioral descriptors from big data. Our platform extracts information per entity from large raw log files.
The result is a vector of indicators that describe the behavior of an entity over a predefined period of time.

Figure 5: Matrix Decomposition outlier detection method:
the original variables are projected into the top j principal
components space. The dataset is reconstructed with the in-
verse projection, and the reconstruction error is used as the
outlier score.

means that, the higher is j, the most variance will be ac-
counted for within the components from 1 to j. With this
outlier score definition, large deviations in the top principal
components are not heavily weighted, while deviations in the
last principal components are. This way, outliers present large
deviations in the last principal components, and thus will re-
ceive high scores.

6.2 Replicator Neural Networks
Key idea: This method is similar to the previous one, in
the sense that it also relies on a compression-reconstruction
analysis. However, in this case, we train a multi-layer neu-
ral network to compress and reconstruct the data in such a
way that the bulk of the data is reconstructed accurately, but
outliers are not. This way, the reconstruction error can be
directly translated into an outlier score.

Replicator Neural Networks (RNNs), or autoencoders, are
multi-layer feed-forward neural networks. The input and out-
put layers have the same number of nodes, while intermediate
layers are composed of a reduced number of nodes. As de-
picted in Figure 6, we consider RNNs that are composed of
three hidden layers. The first and third hidden layers count
p/2 neurons, while the second, central layer is composed of
p/4 neurons, where p is the dimensionality of the data. The

Figure 6: RNN composed of three intermediate layers. The
original variables are compressed via non-linear transforma-
tion in the first layers and then decompressed to reconstruct
the inputs. The reconstruction error is used as outlier score.

tan-sigmoid transfer function is used as an activation function
across the network.

The network is trained to learn identity-mapping from in-
puts to outputs. The mapping from inputs to intermediate
layers compresses the data. The data is then decompressed to
reconstruct the inputs, mapping from intermediate layers to
outputs. This reconstruction is lossy— that is, introduces an
error, and the training process is aimed at minimizing it. The
reconstruction error for the the i-th example is given by:

ei =

p∑
j=1

(xij − rij)2 (3)

where the input vector x and output vector r are both p-
dimensional. Given a trained RNN, the reconstruction error
is used as the outlier score: test instances incurring a high
reconstruction error are considered outliers.

6.3 Density-based outlier analysis
Key idea: Next, we incorporate a technique that fits a mul-
tivariate model to the data. This results in a joint probability
distribution that can be used to detect rare events, because test
instances which fall within a low-density region of the distri-

0 2 4 6 8 10 12
0

1,000

2,000

3,000

4,000

x
⇓

⇒

0 0.2 0.4 0.6 0.8 1
0

1,000

2,000

3,000

4,000

U

0 2 4 6 8 10 12
0

1,000

2,000

3,000

4,000

x+noise

⇒

0 0.2 0.4 0.6 0.8 1
0

100

200

300

U(x+noise)

Figure 7: A discrete valued variable will not have a uniform
density for its cdf values (top right). However, if tiny amount
of additive white Gaussian noise is added to the variable (es-
sentially making it continuous), the density of its cdf values
look closer to uniform (bottom right). We use this trick to be
able to model discrete variables using copulas.

bution are considered outliers. The outlier score is simply the
probability density of a point in the multidimensional space.

To build a multivariate model from marginal distributions
which are not all Gaussian, we exploit copula functions. A
copula framework provides a means of inference after model-
ing a multivariate joint probability distribution from training
data. Because copula frameworks are less well known than
other forms of estimation, we will now briefly review copula
theory. We will then describe how we construct the individual
non-parametric distributions that make up a copula, and how
we then couple them to form a multivariate density function.

A copula function C(u1, . . . um; θ) with parameter θ is a
joint probability distribution of m continuous random vari-
ables, each of them uniformly distributed in [0, 1]. According
to Sklar’s theorem, any copula function that takes probabil-
ity distributions Fi(xi) as its arguments defines a valid joint
distribution with marginals Fi(xi). Thus, we are able to con-
struct a joint distribution function for x1 . . . xm with arbitrary
marginals as

F (x1 . . . xm) = C(F1(x1) . . . Fm(xm); θ). (4)
The joint probability density function (PDF) is obtained by
taking the mth order derivative of eqn. (4)

f(x1 . . . xm) =

∂m

∂x1 . . . ∂xm
C(F1(x1) . . . Fm(xm); θ)

=

m∏
i=1

fi(xi) · c(F1(x1) . . . Fm(xm); θ) (5)

where c(.) is the copula density.
Gaussian copula: A multivariate Gaussian copula forms a

statistical model for our variables given by
CG(u1 . . . um; Σ) = FG(Φ−1(u1) . . .Φ−1(um); Σ) (6)

where FG is the CDF of multivariate normal with zero mean
vector and Σ as covariance, and Φ−1 is the inverse of the
standard normal.
Estimation of parameters: Let Ψ = {Σ,ψi}i=1...m be the
parameters of a joint probability distribution constructed with
a copula andmmarginals, being ψi the parameter of marginal
ith.

Given N i.i.d observations of the variables x =
(x11, . . . ,xmN), the log-likelihood function is:

L(x; Ψ) =

N∑
l=1

log

{(
m∏
i=1

f(xil;ψi)

)

c(F (x1) . . . F (xm); Σ)

}
(7)

Parameters Ψ are estimated via maximum log-likelihood
(Iyengar [2011]):

Ψ̂ = arg max
Ψ

N∑
l=1

log

{(
m∏
i=1

f(xil;ψi)

)

c(F (x1) . . . F (xm); Σ)

}
(8)

Estimation of Fi(xi): The first step in modeling copula den-
sity is to model the individual distributions for each of our
features, xi. We model each feature using a non-parametric
kernel density-based method, described by:

fσ(xji) =
1

nσ

n∑
j=1

K

(
xji − µ
σ

)
(9)

where K(.) is a Gaussian kernel with the bandwidth param-
eter σ. Using this method together with our features, we en-
counter two problems.

First, most of the features produce extremely skewed dis-
tributions, making it hard to set the bandwidth for the Gaus-
sian kernel. We set bandwidth parameter using Scott’s rule of
thumb.

Second, some of our variables are discrete ordinal. For
copula functions to be useful, the probability density of ui =
F (xi) should be uniform, and for discrete-valued variables
this condition is not met. In Figure 7, we demonstrate this
using one of our features. The top left plot in the figure shows
histogram for an original feature xi. The histogram on the
right is for ui, which is the cdf values for the feature values.
As we can see the histogram for ui is not uniform.

To overcome this problem, we add additive white Gaussian
noise to xi. This simple transformation gives us a continuous-
valued feature, given by xci . In our formulation, we add noise
to each feature value given by:

xci = xi + η(0,np) (10)
where np is a variance of the Gaussian distribution η used
to add noise. This value is determined by evaluating np =
Ps

SNR , where SNR is the desired signal-to-noise ratio. Ps
is the signal power, estimated based on the distribution of all

0 1000 2000 3000
0

500

1000

1500

Log of the Joint PDF model
using Gaussian copula and Weibull

Log−likelihood of the sample = −6539
0 1000 2000 3000

0

500

1000

1500

Joint PDF model
using Multivariate Normal

Log−likelihood of the sample = −64194

Figure 8: The left panel shows the contour lines of the log PDF of a joint Gaussian copula probability density model with
Weibull marginals. The right panel shows the contour lines of a bi-variate normal fitted to the data. Qualitatively, it is clear that
the copula model is better; as is evident from the contour lines spanning the entire data. Quantitatively, the log-likelihood of
the multivariate normal model is one order of magnitude smaller at -64194 when compared to -6539 achieved by Copula based
model.

values for the feature xi 2. For most of our features, the SNR
value is set to 20. The bottom left plot in Figure 7 shows
the histogram for the transformed variable xci and the plot on
the right shows the histogram for uci . This looks closer to
uniform.
Why Copulas?: In Figure 8 we demonstrate the efficacy of
Copulas in modeling a bi-variate distribution. We took two
features, plotted a scatter plot, modeled the features using a
Gaussian copula with Weibull marginals and overlaid the con-
tours for the density function. The plot on the left shows the
result. On right we see the contours for a bi-variate Gaus-
sian fitted to this data. We can see qualitatively that the joint
Copula density function fits the data better. For quantitative
comparisons, we evaluated the log-likelihood value to eval-
uate the fit. The Copula fits the data better by an order of
magnitude.

6.4 Outlier score interpretation
The three outlier detection methods presented in the previous
section assign a score that indicates each example’s incon-
gruity. Therefore, it is possible to rank all the test examples
according to the score given by an individual detector. In
the same way, one can select the top-k examples, or define a
threshold to determine when the score is significant enough
to consider the example as an outlier. Three main issues arise
from such strategies:

1. Selecting the top-k examples can lead to false posi-
tives, because highly-ranked examples will not neces-
sarily have a high outlier score. Since ranking is deter-
mined by comparing examples to each other and not by

2In future we estimate the signal power value for each individual
value of the feature xi separately allowing a more customized noise
value

their absolute score, this scenario may occur if the data
has few outliers.

2. Thresholding techniques are difficult to implement be-
cause scores are not easily interpretable. For instance,
joint probability density values differ by more than 50
orders of magnitude (from 10−60 to 10−2).

3. Because combining scores from different methods is not
straightforward, it is also difficult to exploit the robust-
ness of multi-algorithm outlier detection ensembles. Not
only can the range of values returned by different meth-
ods be completely different, these methods can also re-
sult in opposite categorizations; in some cases, such as
the matrix decomposition-based method, outliers receive
the highest scores, while in other cases, such as prob-
ability density estimation methods, normal data points
receive higher scores.

One solution for overcoming these limitations while still tak-
ing advantage of two or more detectors is to combine ranks
instead of scores Zimek et al. [2014]. However, highly
ranked examples will still be considered outliers, regardless
of whether their absolute outlier scores are high or not. As a
result, this strategy can result in a high false positive rate.

Another solution is to project all scores into the same
space, ideally interpretable as probabilities. We adopt this last
strategy; however, as we explain in the following subsection,
it comes with its own challenges.

6.5 Transforming outlier scores into probabilities
We model matrix decomposition-based outlier scores with a
Weibull distribution, which is flexible, and can model a wide
variety of shapes. For a given score S, the outlier probability
corresponds to the cumulative density function evaluated in
S: F (S) = P (X ≤ S). The exact same technique can be
applied to the replicator neural networks scores.

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

(a) Density-based
0 0.2 0.4 0.6 0.8 1

0

200

400

600

(b) Matrix
Decomposition-based

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

(c) Replicator Neural
Networks-based

0 0.2 0.4 0.6 0.8 1
0

200

400

600

(d) Combined probability
scores

Figure 9: For one-day’s worth of data, these plots show the
histograms for the outlier scores from the three methods and
the histogram of the combined score. These scores for each
method are after the series of transformations performed on
their raw score.

Joint probability densities require an additional step, be-
cause the scores span different orders of magnitude. As a
result, most of the information is lost. To mitigate this loss,
we first compute the negative logarithm of the scores, and
then shift the distribution to have positive support. Once
this transformation is performed, we model the transformed
scores with a Weibull distribution and determine the outlier
probability for each example.

6.6 Outlier detection ensembles
Multi-algorithm ensembles are combinations of predictions
from different machine learning models. This strategy im-
proves robustness by compensating for the individual biases
of models in the ensemble. In this case, we average out-
lier probabilities obtained separately by each of the methods.
Each example must be highly scored by all methods in order
to be highly ranked and shown to the end user.

7 Active Model Synthesis
This system is meant to continually identify new and evolv-
ing attacks with the help of an analyst, and to use these iden-
tifications to synthesize new models that can predict attacks
without the analyst, using behavioral descriptors. For this, we
designed a closed-loop system that entwines analyst intuition
with machine intelligence.

We present an outline of the Active Model Synthe-
sisframework in Figure 10. The algorithm has three
phases–TRAINING, DEPLOYMENT and FEEDBACK COLLEC-
TION/UPDATING–and cycles through these phases daily. The
entity-feature matrix and the labeled data serve as the algo-
rithm’s inputs. In an everyday workflow, the system trains
unsupervised and supervised models, applies these models

to that day’s incoming data, identifies k entities as extreme
events or attacks, and brings them and their data to the an-
alysts’ attention. The analysts then use an interface to sort
through these rare events and pick out which could truly be
attacks. Finally, we use the analysts’ deductions to build a
new predictive model for the next day.

The key advantages of this system are:
• Overcomes limited analyst bandwidth: The number of

events an analyst can feasibly examine is a tiny fraction
of the overall event volume, about 10−5 %. To select
these events, we rely on the accurate, robust and multi-
method outlier detection system presented in Section 6.
We update our models daily and use them the next day,
as presented in Figure 10.
• Overcomes weaknesses of unsupervised learning: One

of the key intuitions driving our system is that an event’s
rarity (or its status as an outlier) does not constitute ma-
liciousness, and that an event’s score does not capture
the intent behind it. If we consider all top k events as
malicious, then a simple threshold-based detector would
be enough to diagnose them. A non-linear model en-
ables us to imitate analysts’ subjective assessment of the
events.
• Actively adapts and synthesizes new models: Analyst

feedback delivers labeled data on a daily basis. This
increases the training data available to the system, al-
lowing us to change models on a daily basis. This setup
captures the cascading effect of the human-machine in-
teraction: the more attacks the predictive system detects,
the more feedback it will receive from the analysts; this
feedback, in turn, will improve the accuracy of future
predictions. Therefore, as time progresses and the sys-
tems absorb the analysts’ feedback, we expect to see
clear improvement in the detection rate. In addition, we
allow the analysts to sort the attacks into multiple cate-
gories, enabling us to build custom models for different
attacks.

8 Experimental setup
To validate our platform, we experimented with a real-world
data set, with reported attacks introduced in Section 4. The
experiments performed were designed to show how the ana-
lyst’s feedback improved the threat-detection process.

8.1 Types of attacks
To illustrate the variety of threats that may compromise enter-
prise platforms, we describe the behaviors involved in three
representative attacks.
• Account takeover attacks: Account takeover attacks gen-

erally consist of two steps. First, attackers will try to
access a given website using many user/password pairs
from a reduced number of IP addresses. At this stage,
the bad actors will figure out which user credentials are
active, but will perform few or no checkouts. Note that
this step can be detected by looking at elevated numbers
of login attempts originating from the same IP; however,
strictly speaking, no fraud has yet been committed.

APPLY MODELS: Given the entity-feature matrix Mt at time t, deploy and execute the models Ut−1 and St−1:
STEP 1A: Apply the unsupervised model Ut−1 to Mt and generate scores given by P.
STEP 1B: Apply the supervised model St to Mt and generate scores given by Z.

SELECT k ENTITIES: Given analyst bandwidth k, scores from unsupervised model, P, and the supervised model Z:
STEP 2A: Select top k

2 entities based on the score P.
STEP 2B: Select top k

2 entities based on the score Z.

COLLECT FEEDBACK AND UPDATE: Show the k entities to the analyst and collect feedback:
STEP 3: For each of the k entities collect analyst defined labels and addDk it to the labeled training dataDt = Dk∪Dt−1

TRAINING: Given the entity-feature matrix Mt at time t, and labeled data Dt:
STEP 4A: Train an unsupervised model Ut using Mt. The unsupervised training includes multiple modeling techniques

and an ensembling method described in Section 6.
STEP 4B: If labeled data, Dt, is available, train a supervised model St using a random forest classifier.

Figure 10: ACTIVE MODEL SYNTHESIS algorithm

At a later time, the same or a different bad actor will ac-
cess the site with stolen ”validated” credentials, and per-
form transactions using the credit cards associated with
these accounts. In this case, to avoid raising suspicions,
attackers will generally use a single user per IP address.
• New account fraud: In a new account fraud, a bad ac-

tor gains access to a stolen credit card and creates a new
account using the credit card owner’s personal informa-
tion. Once the account is created, the bad actor performs
transactions with the stolen credit card.
• Terms of service abuse: This category covers fraudulent

violations of the terms of service agreement. Frauds of
this sort have very distinct signatures. Two simple exam-
ples are the abusive use of promotional codes, or delet-
ing the web browser’s cookies to participate more times
than allowed in an online voting platform.

8.2 Analyzing the impact of the analysts’ feedback
We compare the fraud detection rate obtained with a purely
unsupervised outlier analysis approach to the Active Model
Synthesis strategy explained in Section 7.

In some scenarios, we may have access to labeled data
from the past, even before the rare event detection system is
deployed. We call these labels historic labels. We introduce
an additional parameter, d ∈ {0, 28} to represent the num-
ber of days for which we have (albeit incomplete or noisy)
labeled examples. For each strategy, we report the total num-
ber of detected attacks on a monthly basis, the recall, and the
area under the receiver operating characteristic curve (AUC)
of the deployed classifier.

Figure 11 shows the detection rates achieved with user-
based features, where the analyst has a fixed daily bandwidth
of k = 100 incident investigations. The following observa-
tions are worth noting:

• The Active Model Synthesis setups beat fully unsuper-
vised outlier detection by a large margin. Over the 12
weeks of the simulation, the outlier detection approach
caught a total of 42 attacks, while the Active Model Syn-
thesis setups with d=0 and d=28 detected 143 and 211

attacks respectively, out of a total of 318 attacks success-
fully linked to individual users.
• The detection rate of the Active Model Synthesis setups

with d=0 and d=28 increases over time, reaching 0.500
and 0.604 respectively at the 12th and final week of the
simulation.
• The performance of the classifiers at the end of the 12th

week is almost identical between the three Active Model
Synthesis setups. In the case of d=0, the AUC of the
classifier in the final week reaches 0.940, while the setup
considering d=28 reaches 0.946.

Based on these results, we present the following key find-
ings:
• Over the course of three months, our system with d=0,

with no initial labeled examples, increased the attack de-
tection rate by 3.41×, compared to state-of-the-art unsu-
pervised outlier detection.
• Our platform reduces the number of false positives with

respect to state-of-the-art unsupervised outlier analysis.
As shown in Figure 1, once the system is trained, we
achieve a recall of 0.868 with k (analyst bandwidth) set
to 200, whereas the unsupervised-ML approach achieves
0.737, even when the analyst is shown 1000 entities a
day. This observation indicates a simultaneous increase
of the attack detection rate and a fivefold false positive
reduction; therefore, our system improves the analyst’s
efficiency and mitigates alarm fatigue issues.
• The system learns to defend against unseen attacks and

can be bootstrapped without labeled data. Given enough
interactions with the analyst, the system reaches a per-
formance similar to that obtained when historic attack
examples are available.

9 Conclusion
We present an end-to-end system that combines analyst intel-
ligence with state-of-the-art machine learning techniques to
detect new attacks and reduce the time elapsed between attack
detection and successful prevention. The system presents
four key features: a big data behavioral analytics platform,

k=
50

k=
10

0
k=

20
0

k=
50

0
k=

75
0

k=
10

00

O
D

A
L

O
D

A
L

O
D

A
L

O
D

A
L

O
D

A
L

O
D

A
L

w
ee

k
FP

r
T

Pr
FP

r
T

Pr
FP

r
T

Pr
FP

r
T

Pr
FP

r
T

Pr
FP

r
T

Pr
FP

r
T

Pr
FP

r
T

Pr
FP

r
T

Pr
FP

r
T

Pr
FP

r
T

Pr
FP

r
T

Pr

1
0.

01
3

0.
13

3
0.

01
3

0.
13

3
0.

02
6

0.
13

3
0.

02
6

0.
13

3
0.

05
1

0.
13

3
0.

05
1

0.
13

3
0.

12
9

0.
33

3
0.

12
9

0.
33

3
0.

19
3

0.
40

0
0.

19
3

0.
40

0
0.

25
7

0.
40

0
0.

25
7

0.
46

7

2
0.

01
3

0.
17

4
0.

01
3

0.
13

0
0.

02
7

0.
21

7
0.

02
7

0.
30

4
0.

05
4

0.
39

1
0.

05
4

0.
34

8
0.

13
5

0.
65

2
0.

13
5

0.
78

3
0.

20
3

0.
82

6
0.

20
3

0.
87

0
0.

27
1

0.
91

3
0.

27
1

0.
91

3

3
0.

02
0

0.
03

7
0.

02
0

0.
00

0
0.

03
9

0.
07

4
0.

03
9

0.
11

1
0.

07
9

0.
25

9
0.

07
9

0.
22

2
0.

19
7

0.
63

0
0.

19
7

0.
63

0
0.

29
6

0.
63

0
0.

29
6

0.
85

2
0.

39
5

0.
81

5
0.

39
4

0.
96

3

4
0.

01
3

0.
00

0
0.

01
3

0.
04

8
0.

02
6

0.
09

5
0.

02
6

0.
14

3
0.

05
3

0.
19

0
0.

05
3

0.
42

9
0.

13
3

0.
28

6
0.

13
2

0.
66

7
0.

19
9

0.
52

4
0.

19
9

0.
71

4
0.

26
5

0.
71

4
0.

26
5

0.
85

7

5
0.

01
2

0.
04

8
0.

01
2

0.
04

8
0.

02
4

0.
04

8
0.

02
4

0.
28

6
0.

04
8

0.
04

8
0.

04
7

0.
47

6
0.

11
9

0.
42

9
0.

11
9

0.
71

4
0.

17
9

0.
52

4
0.

17
9

0.
81

0
0.

23
8

0.
61

9
0.

23
8

0.
85

7

6
0.

01
3

0.
04

2
0.

01
3

0.
00

0
0.

02
6

0.
08

3
0.

02
6

0.
29

2
0.

05
2

0.
16

7
0.

05
2

0.
45

8
0.

13
0

0.
25

0
0.

13
0

0.
62

5
0.

19
5

0.
37

5
0.

19
5

0.
66

7
0.

26
0

0.
45

8
0.

26
0

0.
62

5

7
0.

01
2

0.
16

0
0.

01
2

0.
12

0
0.

02
5

0.
24

0
0.

02
4

0.
52

0
0.

05
0

0.
32

0
0.

04
9

0.
64

0
0.

12
4

0.
56

0
0.

12
4

0.
72

0
0.

18
6

0.
64

0
0.

18
6

0.
80

0
0.

24
9

0.
80

0
0.

24
9

0.
88

0

8
0.

01
3

0.
07

4
0.

01
3

0.
29

6
0.

02
7

0.
14

8
0.

02
6

0.
66

7
0.

05
3

0.
33

3
0.

05
3

0.
81

5
0.

13
4

0.
44

4
0.

13
3

1.
00

0
0.

20
0

0.
74

1
0.

20
0

1.
00

0
0.

26
7

0.
81

5
0.

26
7

0.
96

3

9
0.

01
3

0.
22

6
0.

01
3

0.
58

1
0.

02
6

0.
29

0
0.

02
6

0.
67

7
0.

05
3

0.
38

7
0.

05
2

0.
80

6
0.

13
2

0.
67

7
0.

13
2

0.
87

1
0.

19
8

0.
74

2
0.

19
8

0.
87

1
0.

26
5

0.
74

2
0.

26
5

0.
87

1

10
0.

01
3

0.
10

0
0.

01
2

0.
30

0
0.

02
5

0.
10

0
0.

02
5

0.
63

3
0.

05
1

0.
20

0
0.

05
0

0.
76

7
0.

12
7

0.
50

0
0.

12
6

0.
86

7
0.

19
0

0.
73

3
0.

19
0

0.
93

3
0.

25
3

0.
76

7
0.

25
3

0.
93

3

11
0.

01
4

0.
08

3
0.

01
4

0.
36

1
0.

02
8

0.
11

1
0.

02
8

0.
55

6
0.

05
6

0.
16

7
0.

05
6

0.
69

4
0.

14
1

0.
30

6
0.

14
1

0.
72

2
0.

21
2

0.
44

4
0.

21
2

0.
80

6
0.

28
3

0.
63

9
0.

28
2

0.
80

6

12
0.

01
1

0.
02

6
0.

01
1

0.
34

2
0.

02
3

0.
05

3
0.

02
2

0.
63

2
0.

04
5

0.
07

9
0.

04
4

0.
86

8
0.

11
3

0.
28

9
0.

11
2

0.
89

5
0.

16
9

0.
39

5
0.

16
8

0.
92

1
0.

22
5

0.
73

7
0.

22
5

0.
94

7

Ta
bl

e
2:

Fa
ls

e
po

si
tiv

e
ra

te
(F

Pr
)

an
d

tr
ue

po
si

tiv
e

ra
te

(T
Pr

)
of

th
e

A
ct

iv
e

M
od

el
Sy

nt
he

si
sa

nd
un

su
pe

rv
is

ed
ou

tli
er

de
te

ct
io

n
ov

er
th

e
12

w
ee

ks
of

de
pl

oy
m

en
t.

W
e

re
po

rt
th

e
FP

ra
nd

T
Pr

of
th

e
co

m
pa

re
d

ap
pr

oa
ch

es
fo

rd
iff

er
en

td
ai

ly
in

ve
st

ig
at

io
n

bu
dg

et
s

(k
∈

5
0
,1

0
0
,2

0
0
,5

0
0
,1

0
0
0)

0 1 2 3 4
0.0

20.0

40.0

60.0

80.0

100.0

Month

D
et

ec
te

d
A

tta
ck

s

Outlier Detection
Active learning d=0
Active learning d=28

(a) Detected Attacks

0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Month

R
ec

al
l

Outlier Detection
Active learning d=0
Active learning d=28

(b) Recall

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Month

AU
C

Outlier Detection
Active learning d=0
Active learning d=28

(c) AUC

Figure 11: User-based analysis: we report the number of detected attacks, recall rate, and AUC of the three compared ap-
proaches: outlier detection, Active Model Synthesiswith d = 0, and Active Model Synthesiswith d = 28

an ensemble of outlier detection methods, a mechanism for
obtaining feedback from security analysts, and a supervised
learning module. We validate our platform with a real-world
data set consisting of 3.6 billion log lines. The results show
that the system learns to defend against unseen attacks: as
time progresses and feedback is collected, the detection rate
shows an increasing trend, improving by 3.41× with respect
to a state-of-the-art unsupervised anomaly detector, and re-
ducing false positives by more than 5×.

References
Naoki Abe, Bianca Zadrozny, and John Langford. Outlier de-

tection by active learning. In Proceedings of the Twelfth
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Philadelphia, PA, USA, Au-
gust 20-23, 2006, pages 504–509, 2006.

Charu C. Aggarwal. Outlier Analysis. Springer, 2013.
Charu C. Aggarwal. Outlier ensembles: Position paper.

SIGKDD Explor. Newsl., 14(2):49–58, April 2013.
Varun Chandola, Arindam Banerjee, and Vipin Kumar.

Anomaly detection: A survey. ACM Comput. Surv.,
41(3):15:1–15:58, July 2009.

Jing Gao and Pang-Ning Tan. Converting output scores from
outlier detection algorithms into probability estimates. In
Proceedings of the Sixth International Conference on Data
Mining, ICDM ’06, pages 212–221, Washington, DC,
USA, 2006. IEEE Computer Society.

Simon Hawkins, Hongxing He, Graham Williams, and Rohan
Baxter. Outlier detection using replicator neural networks.
In Yahiko Kambayashi, Werner Winiwarter, and Masatoshi
Arikawa, editors, Data Warehousing and Knowledge Dis-
covery, volume 2454 of Lecture Notes in Computer Sci-
ence, pages 170–180. Springer Berlin Heidelberg, 2002.

Victoria Hodge and Jim Austin. A survey of outlier detection
methodologies. Artif. Intell. Rev., 22(2):85–126, October
2004.

S.G. Iyengar. Decision-making with heterogeneous sensors-a
copula based approach. PhD Dissertation, 2011.

Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur
Zimek. Interpreting and unifying outlier scores. In Pro-
ceedings of the Eleventh SIAM International Conference
on Data Mining, SDM 2011, April 28-30, 2011, Mesa, Ari-
zona, USA, pages 13–24, 2011.

David D Lewis and Jason Catlett. Heterogeneous uncer-
tainty sampling for supervised learning. In Proceedings of
the eleventh international conference on machine learning,
pages 148–156, 1994.

Barbora Micenková, Brian McWilliams, and Ira Assent.
Learning outlier ensembles: The best of both worlds–
supervised and unsupervised. In KDD’14 Workshops: Out-
lier Detection and Description (ODDˆ2), 2014.

Dan Pelleg and Andrew W. Moore. Active learning for
anomaly and rare-category detection. In Advances in Neu-
ral Information Processing Systems 17, pages 1073–1080,
2004.

Matthias Scholz and Ricardo Vigário. Nonlinear PCA: a new
hierarchical approach. In Proceedings of the 10th Euro-
pean Symposium on Artificial Neural Networks (ESANN),
pages 439–444, 2002.

Matthias Scholz, Martin Fraunholz, and Joachim Selbig.
Nonlinear principal component analysis: Neural network
models and applications. In AlexanderN. Gorban, Balázs
Kégl, DonaldC. Wunsch, and AndreiY. Zinovyev, editors,
Principal Manifolds for Data Visualization and Dimension
Reduction, volume 58 of Lecture Notes in Computational
Science and Enginee, pages 44–67. Springer Berlin Hei-
delberg, 2008.

Erich Schubert, Remigius Wojdanowski, Arthur Zimek, and
Hans-Peter Kriegel. On evaluation of outlier rankings and
outlier scores. In Proceedings of the Twelfth SIAM Interna-
tional Conference on Data Mining, Anaheim, California,
USA, April 26-28, 2012., pages 1047–1058, 2012.

Ted E. Senator, Henry G. Goldberg, Alex Memory,
William T. Young, Brad Rees, Robert Pierce, Daniel
Huang, Matthew Reardon, David A. Bader, Edmond Chow,
Irfan Essa, Joshua Jones, Vinay Bettadapura, Duen Horng
Chau, Oded Green, Oguz Kaya, Anita Zakrzewska, Er-
ica Briscoe, Rudolph IV L. Mappus, Robert McColl,
Lora Weiss, Thomas G. Dietterich, Alan Fern, Weng-
Keen Wong, Shubhomoy Das, Andrew Emmott, Jed Irvine,
Jay-Yoon Lee, Danai Koutra, Christos Faloutsos, Daniel
Corkill, Lisa Friedland, Amanda Gentzel, and David
Jensen. Detecting insider threats in a real corporate
database of computer usage activity. In Proceedings of the
19th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’13, pages 1393–
1401, New York, NY, USA, 2013. ACM.

H. S. Seung, M. Opper, and H. Sompolinsky. Query by com-
mittee. In Proceedings of the Fifth Annual Workshop on
Computational Learning Theory, COLT ’92, pages 287–
294, New York, NY, USA, 1992. ACM.

Mei-ling Shyu, Shu ching Chen, Kanoksri Sarinnapakorn,
and Liwu Chang. A novel anomaly detection scheme based
on principal component classifier. In in Proceedings of
the IEEE Foundations and New Directions of Data Min-
ing Workshop, in conjunction with the Third IEEE Interna-
tional Conference on Data Mining (ICDM’03, pages 172–
179, 2003.

Ting-Fang Yen. Detecting stealthy malware using behavioral
features in network traffic. PhD thesis, Carnegie Mellon
University, 2011.

Arthur Zimek, Ricardo J.G.B. Campello, and Jörg Sander.
Ensembles for unsupervised outlier detection: Challenges
and research questions a position paper. SIGKDD Explor.
Newsl., 15(1):11–22, March 2014.

	Introduction
	AI2
	Related Work
	Data characteristics
	BigData platform for behavioral analytics
	Behavioral signatures
	Design requirements
	From raw logs to behaviors in real time

	Outlier detection methods
	Matrix Decomposition-based outlier analysis
	Replicator Neural Networks
	Density-based outlier analysis
	Outlier score interpretation
	Transforming outlier scores into probabilities
	Outlier detection ensembles

	Active Model Synthesis
	Experimental setup
	Types of attacks
	Analyzing the impact of the analysts' feedback

	Conclusion

