
An Investigation of the FreeBSD r278907 RNG Bugfix

Wilson Lian
UC San Diego

Hovav Shacham
UC San Diego

Stefan Savage
UC San Diego

Manuscript. First posted online October 3, 2016.

Abstract

Operating systems and applications rely on random number generators (RNGs) for a number of
important tasks, most notably cryptographic key generation. The impact of flawed random number
generation practices has been studied extensively in the past [2, 5]. In this paper, we examine the im-
plications of an RNG bug in FreeBSD that was fixed by Subversion commit r278907 [3]. In particular,
our analysis seeks to discover uses of weak random numbers that either enable an attacker to discover
the internal state of the RNG or use such knowledge to predict security-relevant values.

1 The Bug

In Subversion commit r273872, new code was introduced into FreeBSD for managing the randomness
source backing both the /dev/random device file and the kernel’s read_random() interface. Each
such randomness source (or “random adaptor” in FreeBSD parlance) exports a function which takes as
parameters a pointer to a buffer into which to write random bytes and the number of random bytes to be
written.

On system startup, the current random adaptor is set to a dummy adaptor which is backed by the ker-
nel’s random() function,1 which returns consecutive members of the series x[n+1] = (75 ·x[n])mod(231−
1). The underlying 32-bit state of random() is seeded twice during system bootup. The first time, it
is seeded with the current cycle count; later during bootup, it is seeded with a function of the current
timestamp (ts.tv_sec ^ts.tv_nsec, where ts is a struct timespec).

Later on during bootup, a more sophisticated random adaptor which draws entropy from non-deterministic
system events is installed. The code that installs the new random adaptor should overwrite the function
pointer used by read_random() to acquire random bytes, but does not do so. Consequently, calls to the
kernel’s read_random() interface continue returning weak random numbers from random() rather
than genuine random numbers from the sophisticated random adaptor. Reading from /dev/random ac-
quires random bytes from the randomness source through a different chain of pointers that is not impacted
by the bug.

2 Collateral damage: arc4rand/arc4random

The FreeBSD kernel provides an implementation of the Alleged RC4 stream cipher (like the kernel’s
random() implementation, this one is separate from libc’s). The RC4 stream cipher produces a stream
of pseudorandom bits and periodically “stirs” in 32 fresh random bits acquired from read_random().
Therefore, if an adversary can discern the state of the kernel’s random() interface, she has a much better

1The kernel’s random() function is separate from libc’s implementation and keeps different state. Kernel random() is
only exposed to kernel and driver code.



chance of predicting the state of the RC4 key stream. This stirring procedure occurs under the following
four conditions:

1. A randomness adaptor unblocks itself because it believes it has collected enough entropy to return
random values.

2. A caller to the kernel’s arc4rand() provides an argument explicitly requesting stirring to occur
prior to generating the result.

3. More than 64KB of key stream have been produced since the last stirring.

4. More than 300 seconds have passed since the last stirring.

3 Leakage of the state of the kernel’s random()

The read_random() function has numerous call sites in kernel code, and its return values arer often
exposed directly. In other cases, the values produced by read_random() are combined with other
values to produce an adversary-observable value (indirect leakage). If those other values are known or
easily guessed by an adversary, the attacker can brute force search the state space of random() until
she discovers which state (or states) produced the observed value. In this section, we discuss the uses
of read_random() that an adversary may be interested in predicting or using as a source of direct or
indirect state leakage.

3.1 Initialization Vectors

Since random() returns its entire state, an attacker that learns a single return value can predict all
future return values. We therefore seek places in the FreeBSD codebase where the return value from
read_random() might be leaked to a remote adversary.

In many cases, values from read_random() are used by drivers for hardware cryptographic accel-
erators as initialization vectors (IVs) for block cipher modes of operation that require them (e.g., cipher
block chaining). Depending on how the exact details of each mode of operation, the IV may or not be
transmitted in the clear. If an adversary is able to predict IVs, she may be able to launch a chosen plaintext
attack. However, since this vulnerability depends on victim machines requiring specific hardware that is
not necessarily widely deployed, we did not investigate in depth whether the implemented modes rely on
in-the-clear IVs and, more importantly, whether or not an attacker can induce the transmission of these
values remotely (i.e., via scanning).

3.2 TCP Initial Sequence Numbers

In order for an off-path network attacker to launch a TCP injection attack, she must be able to predict or
discover the sequence numbers used by both end points in the TCP connection under attack (in addition to
the IP addresses of the endpoints and the port numbers being used). The initial sequence number (ISN) that
FreeBSD includes in the TCP SYN packet sent during the establishment of an outbound TCP connection
is derived from the local and remote port numbers, the local and remote IP addresses, and 32 consecutive
bytes from the random()-backed read_random() interface (i.e., 4 values from random()). The
initial sequence number is the first 32 bits of the MD5 digest of the concatenation of those values.

If the attacker is able to observe the TCP ISN, port numbers, and IP addresses in a SYN packet
from a bug-afflicted FreeBSD host, she can attempt to discern state of the host’s random() interface
by computing the MD5 digest for all possible states and comparing the results against the observed ISN.



There is a chance of false positives since the ISN is only a prefix of the MD5 digest, but confirming
multiple ISNs can provide additional confidence.

An attacker who is merely scanning the Internet will not be able to observe an outbound SYN packet,
making this vulnerability of little use to her. A web attacker, on the other hand, is able to induce outbound
connections to her own server from the victim’s machine via JavaScript or some other means of client-side
programming. This vulnerability alone provides only a subset of the information required by an adversary
to launch a successful TCP injection attack. In order for the attacker to inject packets into a third party TCP
stream, the attacker must also predict the port numbers in use. Often the server port is trivially predictable,
but the client port is often more difficult. We discuss an adversary’s ability to exploit the randomness bug
to predict client port numbers in §4.1.1.

3.3 IPSec

3.3.1 Encapsulating Security Payload Padding

Encapsulating Security Payload (ESP) is a protocol in the IPSec suite that provides “confidentiality, data
origin authentication, connectionless integrity, an anti-replay service[ . . . ], and limited traffic flow
confidentiality” [4]. ESP packets may contain up to 255 bytes of padding, which by default are 1-byte
integers in the sequence 1,2,3, .... There does, however, exist a code path in FreeBSD which populates
the padding with bytes from read_random(). We are currently unaware of how to coerce a FreeBSD
host into using random bytes instead of consecutive bytes for ESP padding.

3.3.2 Security Parameters Index

In IPSec, the Security Parameters Index (SPI) is a 32-bit field used to associate an incoming packet with a
Security Association (SA), which is simply the notion of a one-way channel with specific IPSec security
services. Values from read_random() are coerced into a certain range to generate random SPIs using
the formula min+(read_random() mod(max−min+1)). An adversary may not always know the values
of min and max, except when they take their default values. Further investigation is required to determine
when this is the case.

4 Predicting the state of the kernel’s arc4rand()

Unlike random(), arc4rand() only reveals a single byte of its state at a time; each time a byte
from the key stream is returned, the state is mutated. The easiest way to predict arc4rand()’s state
is therefore to predict the values that are used to periodically stir its state. This is possible because
arc4rand()’s state always starts with the same value before the first stir. As we mentioned in §2, the
hidden state in the kernel’s RC4 implementation is periodically stirred with bytes generated by read_random(),
and therefore random(). If the attacker is able to learn random()’s hidden state, she must also keep
track of when arc4rand()’s state is stirred.

An adversary can use one of the leakage vectors described in §3 or attempt to indirectly infer random()’s
state using one of the vectors described later in this section. However, the closer to bootup this happens,
the easier it is for the adversary. This is because each time the arc4rand() state is stirred (which could
occur between the production of any two bytes of the key stream), the key stream branches. The search
space for discovering the internal states of both random() and arc4rand() grows with the number of
stirs that have occured. The procedure for doing so when arc4rand()’s state has only been stirred once
with read_random() is as follows:



Identify a mechanism M through which key stream bytes from victim arc4rand() implementation
can be requested on-demand.
Use M to generate a moderate-sized pool of key stream bytes.
for all Internal random() states do

Initialize local implementation of arc4rand() state to common initial value found at bootup.
Stir local implementation of arc4rand() with random() values starting at this state.
Generate a large number of key stream bytes using local implementation of arc4rand()
if non-empty substring of locally-generated key stream matches non-empty prefix of victim-generated

key stream then
Candidate random() state identified
Offset in victim key stream where locally-generated key stream stops matching is likely stirring

point
end if

end for
To track the internal states of random() and arc4rand(), the attacker can identify stirring points

and test subsequent random() values as stirring values until one is found which produces the arc4rand()
key stream following the stirring point. The attacker can periodically poll M for arc4rand() key stream
bytes to keep tabs on the key stream and identify stirring points.

4.1 Usage of the kernel’s arc4rand()

4.1.1 Local transport layer port numbers

When choosing a local port for TCP or UDP, FreeBSD has the option to use arc4rand() to select a
port from a range using the formula min+(arc4rand() mod(max−min))+1. The values of min and
max may take either default or system-defined (via sysctl) values. If the chosen local port number is in
use, a linear probing sequence is used to find a free port.

As with TCP ISNs, this vector is a poor source of arc4rand() key stream bytes since it relies on
the victim machine taking the inititative to contact the adversary. However, if an adversary is able to track
arc4rand()’s state through other means, predicting client port numbers, coupled with predicting TCP
ISNs opens the door to TCP injection attacks. Even if the attacker is not able to predict ISNs, an attack
such as the one presented by Gilad and Herzberg [1] could be used to discover sequence numbers.

4.1.2 IPv4 Identification Field

The Identification (ID) field in IPv4 packet headers is used whenever an IP datagram’s size exceed’s the
MTU of the underlying link layer. The IP datagram is fragmented, and each fragment derived from that
datagram is assigned a common 16-bit ID used by the recipient to reassemble the datagram. FreeBSD
directly populates IP ID fields using arc4rand(), gathering more bytes from arc4rand() in the case
of a collision.

The IP ID field is perhaps the most promising source for arc4rand() key stream bytes since it can
be invoked remotely and on-demand by any network action which elicits a response. However, there may
be gaps in the recovered key stream since it only returns 2 bytes at a time, may encounter collisions, and
may be interleaved with other calls to arc4rand().

4.1.3 Initialization Vectors

The arc4rand() key stream is used to generate IVs. See §3.1 for a discussion of using IVs to leak or
infer the state of RNGs.



4.1.4 TCP SYN-ACK sequence numbers

On a FreeBSD system with SYN cookies disabled, the sequence number on a SYN-ACK packet is derived
directly from arc4rand(). This would be a convenient source for arc4rand() key stream bytes, but
by default FreeBSD uses SYN cookies at all times, even if the machine is not under heavy connection
load.

Using SYN cookies to confirm the state of the RNGs is a foreboding task. SYN cookies are generated
by computing a keyed MAC over various information about the incoming connection and a secret 16-byte
key derived directly from arc4rand(). There are actually two MAC keys. Each key is replaced every
30 seconds, and the two key expirations are 15 seconds out of phase. New SYN cookies are derived
from the most-recently generated key. This design allows for high key turnover while still allowing SYN
cookies generated with the previous key to be accepted.
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