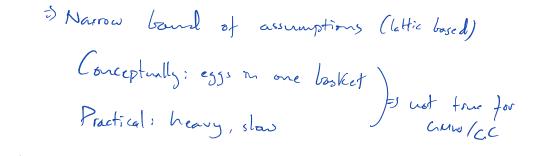
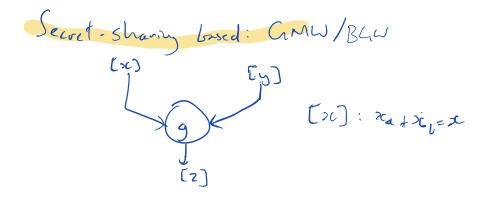
This class; "secure computation on secret data"

So far we've seen FIJE/Lettice techniques

FILE: Eurph (x) Eval f(20)



Charbled Circuits L' Cto, L' Cto, Crio K' Crio Crio K' Crio K' Crio Cri



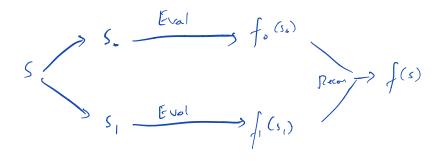
val idea: progress through circuit gate by gate maintaining this maximut

Compare Le contrast

FILE

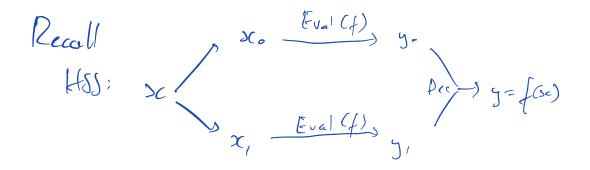
CC/CMW/BGW

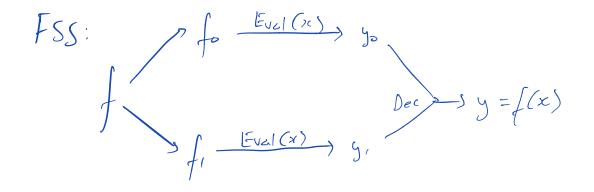
Comm. per gate Succret Com Narrow band of assumption Cuenerically instanticule (latrices) (ot, OWFs) - Conceptually, eggs in one basket - Fast in practice with - Practical: powerful lower grade crypto les. AES. elliptic curros) crypto mus slower



lateresting stiff is what lies in between

Function Secret Sharing (FSS)





Parameters: PEN parties, function dess J, seepara A Cren: 1^t, f 1 K, k2-- Kp (p-partics)

Correctness:
$$f \in \mathcal{F}$$
, $x \in D_{max}(f)$
 $\forall \kappa_{i, \dots, k_{0}} \in Crem(i^{2}, f)$,
 $Dee(Eucl(i, \kappa_{i}, x), \dots, Eucl(e, \kappa_{0}, x_{0})) = f(x)$

Real 2 c Ideal A

Let's only out

Univanted constructions:

Properties become clear with an application

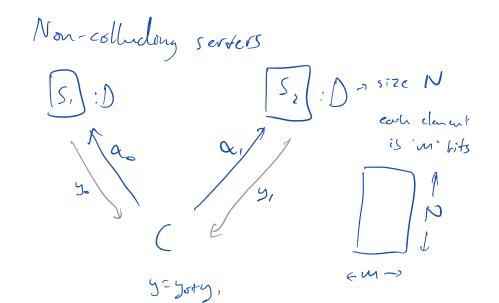
Specifically constructing FSS for class of point functions, alla Distributed Romt Functions

Point function:

far (x) = {b if x = a (0 everywhere die

FSS for point functions, elegant sole. to PIR (alka DPF) Private Information Retrival · Public' database D' = . Client C wishes to read anty at locationia without revealing a to database holder We wish to achieve this without sending D to dient Long history, someone des will cover

2. Server case



Schution with FSS for poind functions

Codefin. Point function fa, i.e. $\int_{\alpha,1}^{\infty} (\infty) = \begin{cases} 1 & \text{if } \sum \alpha \\ 0 & \text{otherwise}, \sum \alpha \\ N \end{cases}$ Note: domain of j'is size of detabase N

> K1, K2 ~ Cren (fx,1) 3) Send K, to S, Kz to Sz

$$\begin{aligned} \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{i=1}^{3} \sum_$$

$$= \sum_{ij \in \{n\}} x_{j} \cdot f_{\alpha_{ij}}(j)$$

$$\int_{i} i f_{j} = \alpha$$

$$\int_{0} otherwise$$

$$anly nonzero value in the sum is j = \alpha$$

$$= x_{\alpha_{i}}(j)$$

-

additively share he entire that table of
$$f$$

i.e. $K_1 = (K_{11}, K_{12}, \dots, K_{1N})$
 $K_2 = (K_{21}, K_{22}, \dots, K_{2N})$
such that $K_{ii} \not ii \not ii = f(i)$

Perfine
$$G(IS_1) = (G(S_1), G(S_2)) = [0]$$

abuse et notation
 $G(S_1) \otimes G(S_2)$

Two cases:

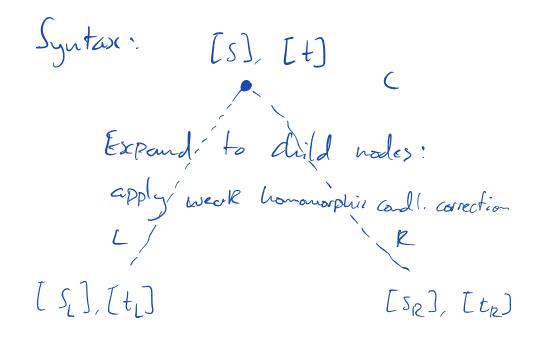
1) if
$$s=0$$
, $s_1=s_2$
 $G(t_0,3) = (G(s_1), G(s_1)) = [0]$
2) else $s \neq 0$, $s_1 \neq s_2$
 $G(t_0,3) = (G(s_1), G(s_2)) = (pseudo)randon$
 $= [-]$

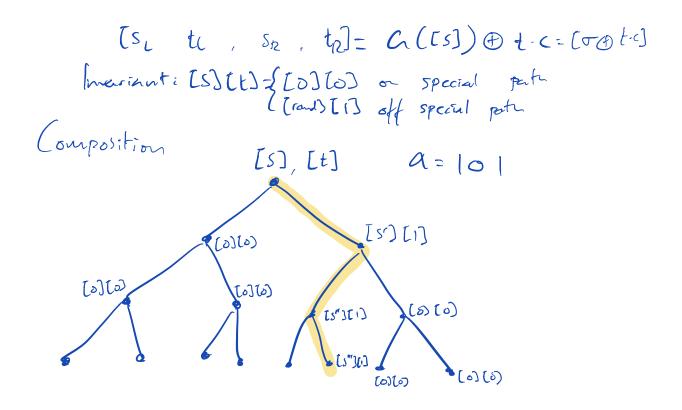
Idea
$$O:$$
 Conditional correction
Lef $[s] = (s_1, s_2)$, $s_1 O S_2 = s \in \{s_1\}^k$
 $[t] = (t_1, t_2)$, $t_1 O t_1 = t \in \{s_1\}$
" control bit"
 $C \in \{s_1\}^k$: Correction word

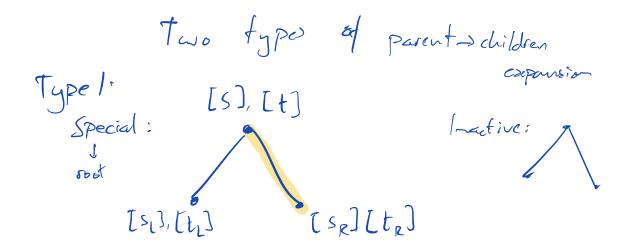
Locally computable:

$$[s \oplus t \cdot c] = (s, \oplus t, \cdot c, s_2 \oplus t_2 \cdot c)$$

sanify check: $s, \oplus t, c \oplus s_2 \oplus t_2 c$
 $= (s \oplus s_2) \oplus (t, \oplus t_2) c$
 $= s \oplus t \cdot c$



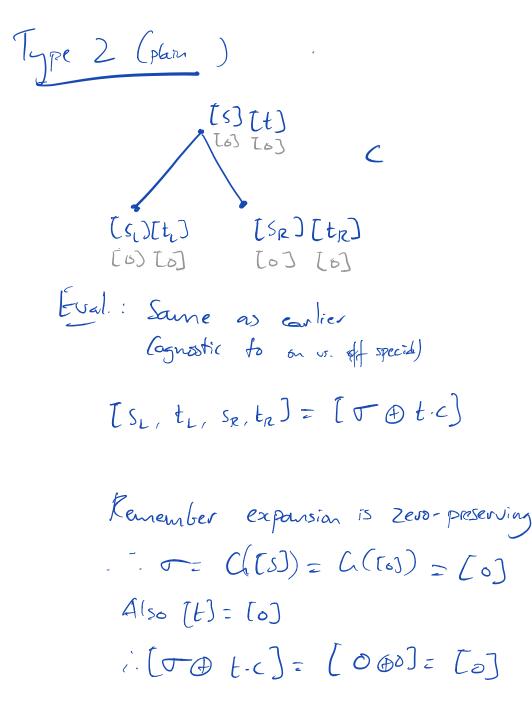




Recall
$$LSJ = (S_1, S_2)$$
 $S_1 \oplus S_2 = S$
 $C_1: \{o, 1\}^{\lambda} \longrightarrow \{o, 1\}^{2\lambda + 2}$
 $G(LSJ) = (C_1(S_1), C_1(S_2)) = [J]$
 $J = C_2(S_1) = C_2(S_1) \oplus C_2(S_2)$
Parse $J = [J] = J$
 $J = C_2(S_1) \oplus C_2(S_2)$

Parse
$$C = C_{1}, C_{R} \in \{o_{i}\}^{2(\lambda+1)}$$

 $[S_{L}, t_{L}] = [\sigma_{L} \oplus t \cdot c_{L}]$
 $[\sigma'_{i}, \sigma] = [\sigma_{L} \oplus c_{L}]$
 $\therefore C_{L} = \sigma_{L}$
 $Mod about C_{R}?$
 $[S_{R}, t_{R}] = [\sigma_{R} \oplus t \cdot c_{R}]$
 $r \in \{o_{i}\}^{\lambda}$
 $[r_{i}, t_{l}] = [\sigma_{R} \oplus c_{R}]$
 $c_{R} = \sigma_{R} \oplus (r)$
 $Note: for a (ed wode C_{R})$

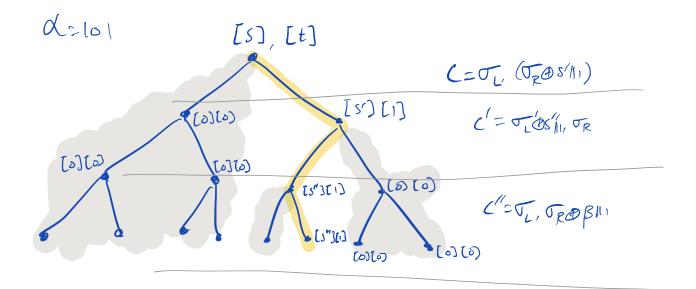


ludependent of Correction word

 $[S_{L}, t_{L}, s_{R}, t_{R}] = [\nabla \oplus t \cdot c] = [\delta, \delta, \delta, \delta]$ =) hursiant preserved Correctuess Costos [0](0] [0][0]

Pirtting it together:

Chem:
$$f\alpha,\beta$$
, $say[\alpha]=3 \ hb$
 $[s] = (s_1,s_2) \leftarrow \{\delta,1\}^{2\lambda}$, $[t] \leftarrow \{\delta,1\}^2$
 $[s'] = ``$
 $[s''] = ``$
 $[s'''] = [\beta]$



Output Keys
$$K_1 = S_1, C, C', C''$$

 $K_2 = S_2, C, C', C''$

Eval:
$$i_{j}\kappa_{c_{j}} \propto = x_{s}x_{i}x_{2}$$

At layer $j \in [x_{1}: \{o, c_{i}2\}]$:
 s_{i}^{i}, t_{i}^{i}
 s_{i}^{i}, t_{i}^{i}
 s_{k}^{i}, t_{k}^{i+1}
 s_{k}^{i}, t_{k}^{i+1}
 s_{k}^{i}, t_{k}^{i+1}
 $s_{k}^{i}, t_{k}^{i+1} = C_{i}(s_{i}^{i}) \oplus t_{i}^{i} + C_{i}$
 $\{f \propto_{s}=0, set s_{i}^{i+1}, t_{i}^{i+1} = s_{k}^{i+1}, t_{k}^{i+1}$

else set
$$s_{i}^{sr} t_{i}^{sr} = s_{Ri}^{sr} t_{Ri}^{sr}$$

Security:
 $K_{i} = s_{i}, t_{i}, C, C', C''$
 $H_{0} = s_{i}, t_{i}, \sigma_{i} \| \sigma_{R} \sigma_{s} - \sigma_{i} \sigma_{s} '' \| \sigma_{R}, \sigma_{i} \| \sigma_{R} \sigma_{s} - \sigma_{i} \sigma_{R} \sigma_{s} \sigma_{s} - \sigma_{i} \sigma_{R} \sigma_{s} \sigma_{$

Exclusion to intervals: simply add FSS for multiple posits. Tweaks : comparison

Extending to many parties: The assuming OWFS, I p-key FSS for Root functions with key lange O(2^{ul2}.2^{Pl2}.m) Assuming p is coust, hetter than trivial (D(2ⁿ.m))

Ronny: Silent OT

PCG : Psendorandon Correlation Generator Correlation Generator : GenCor : CI, Cz ez. Beaver triples,

Cren:
$$5_{1}$$
, 5_{2}
Expand (Si): (i
 $(1, (2) \approx GrenCor(1^{2}))$
Ciesci y; $2i$
 $(si, si): (i)$
 $fechnical: reverse
sampley$

=> (sepensive

OT Correlation:
$$q_i \oplus r_i = \Delta \cdot t_i$$

How do we use this?
 $H(r_i)$ serve as other to
 $I_i(r_i \oplus \Delta)$ encrypt it message pair
(or robust: H(rod) appears random

R decrypts using
$$H(r; \mathcal{O} b; \Delta) = H(q;)$$

For some rute ers m, n, t

$$\vec{\alpha} \propto_1, \alpha_2 \dots \alpha_k \in [m]$$

Define "point fundio $\int \vec{\alpha}_{iy}^{(ed)} = \int \Delta i f^{(ed)}$

So
$$m = S_1 : K_1, \vec{\alpha}$$

 $S_2 : K_2, \Delta$

Define
$$b_i = \begin{bmatrix} 1 & 0 \\ \alpha_i & \alpha_j \\ 0 \end{bmatrix}$$

 $b_i = 1$ if $i \in \mathbb{Z} \implies fully specified by $S_i$$

Define
$$q_i = Eval (i, \kappa_2, i)$$

 $r_i = Eval (i, \kappa_2, i)$
 $q_i \oplus r_i = b_i \cdot \Delta$
Looks like OF correlation, but we're
not then yet.

This is where LPN comes in

Dual LPN assumption; binong vector of low 4W Sampled according to some distr. If is public, so matrix mult is a linear operation on the shares $\left(\begin{array}{c} \left(s_{22} \times s_{2}, \Delta \right) \right) \right)$ Expand (s,=k,,a) $\left[\begin{array}{c} \left(\begin{array}{c} q_{1} \\ \vdots \\ q_{m} \end{array} \right) = \left(\begin{array}{c} q_{1}' \\ \vdots \\ q_{m}' \end{array} \right) \\ \left[\begin{array}{c} \left(\begin{array}{c} q_{1}' \\ \vdots \\ r_{m} \end{array} \right) \right] \\ \left[\begin{array}{c} \left(\begin{array}{c} r_{1} \\ \vdots \\ r_{m} \end{array} \right) \right] = \left[\begin{array}{c} r_{1}' \\ \vdots \\ r_{m}' \end{array} \right]$ gi= <Hi, gi>

 $C_{i} = (H_{i}, \Gamma_{i}) = (L_{i}, q; \oplus b; \Delta) = q_{i} \oplus \Delta (H_{i}, b;)$