Historical cryptography

cryptography \approx encryption main applications: military and diplomacy

Historical cryptography

- All "historical" cryptosystems badly broken!
- No clear understanding or science of what properties are needed.
- Honest users and attackerss are humans with limited computational capabilities.

Modern cryptography

cryptography based on rigorous science/math
multiparty-computations
coin-tossing

information theory

public-key cryptography
signature schemes rigorous definitions
zero-knowledge
electronic auctions electronic voting
e-cash
private info retreival
threshold crypto
...
-
now

What happened?

Technology

afforadable hardware

Demand

companies and individuals start to do business electronically

Theory

information theory + computational complexity
can reason about security in a formal way.

Modern cryptography

- Rigorous definitions of what it means to have secure encryption, signature, ...
- Elegant constructions using number theory, algebra. (Still many ad-hoc constructions, we'll ignore them)
- Proofs of security
- usually rely on simple-to-state, well-studied "hardness assumption".

Provable security - the motivation

In many areas of computer science formal proofs are not essential.
For example, instead of proving that an algorithm is efficient, we can just simulate it on a "typical input".

In cryptography we can't experimentally demonstrate security. A notion of a "typical attacker" does not make sense.
Can't run a test to check non-existence of an attack.

Need proofs!

This course is about...

- Main focus: how can we rigorously define security requirements, reason about them, use math to achieve them?
- Cover: basic cryptographic primitives: encryption, authentication, hash functions, signatures...
- Some advanced topics, mostly towards the end.
- Emphesize elegant ideas and constructions over ad-hoc methods and schemes used in practice.

This course is not about

- practical data security (firewalls, intrusion-detection, VPNs, etc.),
- Implementing cryptography: many pitfalls
- history of cryptography,
- number theory and algebra
(we will use them only as tools)
- complexity theory.

The Encryption Problem

Encryption Schemes (a very general picture)

Encryption scheme = encryption \& decryption procedures

Kerckhoffs' principle

Auguste Kerckhoffs (1883):

The enemy knows the system
The cipher should remain secure even if the adversary knows the specification of the cipher.

The only thing that is secret is a
key k
that is usually chosen uniformly at random

A more refined picture

Kerckhoffs' principle: motivation

1. It is unrealistic to assume that the design details remain secret. Too many people need to know. Software/hardware can be reverse-engineered!
2. Pairwise-shared keys are easier to protect, generate and replace.
3. The design details can be discussed and analyzed in public.
4. What would it even mean formally that the specification is unknown? Does it have a distribution?

Not respecting this principle
"security by obscurity".

A mathematical view

\mathcal{K} - key space:
\mathcal{M} - plaintext space
C - ciphertext space
An encryption scheme is a pair (Enc,Dec), where

- Enc: $\mathcal{K} \times \mathcal{M} \rightarrow C$ is an encryption algorithm,
- Dec : $\mathcal{K} \times \mathcal{C} \rightarrow \mathcal{M}$ is an decryption algorithm.

We will sometimes write $E n c_{k}(m)$ and $\operatorname{Dec}_{k}(c)$ instead of $E n c(k, m)$ and $\operatorname{Dec}(\mathrm{k}, \mathrm{c})$.

Correctness

for every k, m we should have $\operatorname{Dec}_{k}\left(E n c_{k}(m)\right)=m$.

Idea 1: Shift cipher

$\mathcal{M}=$ words over alphabet $\{A, \ldots, Z\} \approx\{0, \ldots, 25\}$
$\mathcal{K}=\{0, . ., 25\}$
$E n c_{k}\left(m_{0}, \ldots, m_{n}\right)=\left(k+m_{0} \bmod 26, \ldots, k+m_{n} \bmod 26\right)$
$\operatorname{Dec}_{k}\left(c_{0}, \ldots, c_{n}\right)=\left(k+c_{0} \bmod 26, \ldots, k+c_{n} \bmod 26\right)$

Cesar: k=3

Security of the shift cipher

How to break the shift cipher?
Check all possible keys!
Let c be a ciphertext.
For every $\mathrm{k} \in\{0, \ldots, 25\}$ check if $\mathrm{Dec}_{\mathrm{k}}(\mathrm{cc}$ "makes sense".
Most probably only one such k exists.
Thus $\operatorname{Dec}_{k}(\mathrm{c})$ is the message.
This is called a brute force attack.
Moral: the key space needs to be large!

Idea 2: Substitution cipher

$\mathcal{M}=$ words over alphabet $\{A, \ldots, Z\} \approx\{0, \ldots, 25\}$
$\mathcal{K}=$ a set of permutations of $\{0, \ldots, 25\}$

$\operatorname{Enc}_{\pi}\left(m_{0}, \ldots, m_{n}\right)=\left(\pi\left(m_{0}\right), \ldots, \pi\left(m_{n}\right)\right)$
$\operatorname{Dec}_{\pi}\left(c_{0}, \ldots, c_{n}\right)=\left(\pi^{-1}\left(c_{0}\right), \ldots, \pi^{-1}\left(c_{n}\right)\right)$

How to break the substitution cipher?

Use statistical patterns of the language.

For example: the frequency tables.

Texts of 50 characters can usually be broken this way.

Letter	Frequency
E	0.127
T	0.097
I	0.075
A	0.073
O	0.068
N	0.067
S	0.067
R	0.064
H	0.049
C	0.045
L	0.040
D	0.031
P	0.030
Y	0.027
U	0.024
M	0.024
F	0.021
B	0.017
G	0.016
W	0.013
V	0.008
K	0.008
X	0.005
Q	0.002
Z	0.001
J	0.001

Figure 7 - Frequency Table

Other famous "bad" ciphers

Vigenère cipher:

Enigma

Perfectly Secure Encryption

Constructions \& Limitations

Defining "security of an encryption scheme" is not trivial.

consider the following experiment

(m - a message)

1. the key K is chosen uniformly at random
2. $\mathrm{C}:=\mathrm{Enc}_{\mathrm{K}}(\mathrm{m})$ is given to the adversary
how to define security
(m-a message)
3. the key K is chosen uniformly at random
4. $C:=E n c_{K}(m)$ is given to the adversary

An idea

"The adversary should not be able to learn K."

A problem

the encryption scheme that "doesn't encrypt":

$$
E n c_{k}(m)=m
$$

satisfies this definition!

Idea 2

(m - a message)

1. the key K is chosen uniformly at random
2. $C:=E n c_{k}(m)$ is given to the adversary

An idea

"The adversary should not be able to learn m."

A problem

What if the adversary can compute, e.g., the first half of m ?

Idea 3

(m - a message)
1. the key K is chosen uniformly at randomly
2. $C:=E n c_{K}(m)$ is given to the adversary

An idea

"The adversary should not learn any information about m."

Sounds great! But what does it actually mean? How to formalize it?

Need some probability theory.

Example

Probability Theory (review)

- Probability space:
- Universe U
- Probability function: for all $u \in \mathcal{U}$, assign $0 \leq \operatorname{Pr}[u] \leq 1$ such that $\sum_{u \in u} \operatorname{Pr}[u]=1$.
- Example: uniform distribution over $\mathcal{U}=\{0,1\}^{2}$ assigns $\operatorname{Pr}[00]=\operatorname{Pr}[01]=\operatorname{Pr}[10]=\operatorname{Pr}[11]=\frac{1}{4}$.

Probability Theory (review)

- Probability space:
- Universe U
- Probability function: for all $u \in \mathcal{U}$, assign $0 \leq \operatorname{Pr}[u] \leq 1$ such that $\sum_{u \in u} \operatorname{Pr}[u]=1$.
- Random variables: X, Y, Z, \ldots
- Formally, functions $X: \mathcal{U} \rightarrow \mathcal{X}, \quad Y: \mathcal{U} \rightarrow \mathcal{Y} \ldots$
- induce distributions $\operatorname{Pr}[X=x]=\sum_{\{u: X(u)=x\}} \operatorname{Pr}[u]$
- Example: uniform distribution over $\mathcal{U}=\{0,1\}^{2}$
$-X=$ first bit, $\mathrm{Y}=$ second bit, $\mathrm{Z}:=X+Y, W:=X \oplus Y$

Probability Theory (review)

- Probability space:
- Universe U
- Probability function: for all $u \in \mathcal{U}$, assign $0 \leq \operatorname{Pr}[u] \leq 1$ such that $\sum_{u \in u} \operatorname{Pr}[u]=1$.
- Random variables: X, Y, Z, \ldots
- Formally, functions $X: \mathcal{U} \rightarrow \mathcal{X}, \quad Y: \mathcal{U} \rightarrow \mathcal{Y} \ldots$
- induce distributions $\operatorname{Pr}[X=x]=\sum_{\{u: X(u)=x\}} \operatorname{Pr}[u]$
- Random variables X, Y are independent if for all x, y :

$$
\operatorname{Pr}[X=x, Y=y]=\operatorname{Pr}[X=x] \cdot \operatorname{Pr}[Y=y]
$$

Probability Theory (review)

- Example: uniform distribution over $U=\{0,1\}^{2}$
$-X=$ first bit, $\mathrm{Y}=$ second bit, $\mathrm{Z}:=X+Y, W:=X \oplus Y$
- Are X, Y independent?
- Are X, Z independent?
- Are X, W independent?

Probability Theory (review)

- For two random variables X, Y and outcomes x, y we define the conditional probability:

$$
\operatorname{Pr}[X=x \mid Y=y]=\frac{\operatorname{Pr}[X=x, Y=y]}{\operatorname{Pr}[Y=y]}
$$

- Interpretation: the probability that $X=x$ if we are told that $Y=y$.
- Example: uniform distribution over $\mathcal{U}=\{0,1\}^{2}$
$-X=$ first bit, $\mathrm{Y}=$ second bit, $\mathrm{Z}:=X+Y, W:=X \oplus Y$
$-\operatorname{Pr}[X=1 \mid Z=1]=$?

Probability Theory (review)

Events: An event E is a subset \mathcal{U}. We define $\operatorname{Pr}[E]=$ $\sum_{\{u \in E\}} \operatorname{Pr}[u]$.
Alternatively, can think of E as binary random var.

- Union bound: for any events E_{1}, E_{2} :

$$
\begin{gathered}
\operatorname{Pr}\left[E_{1} \cup E_{2}\right]=\operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]-\operatorname{Pr}\left[E_{1} \cap E_{2}\right] \\
\leq \operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]
\end{gathered}
$$

- Example: uniform distribution over $\mathcal{U}=\{0,1\}^{2}$
- Events E_{1} : first bit 1, E_{2} : second bit 1.

Back to cryptography...

"The adversary should not learn any information about m."

Consider random variables:
M some random variable over \mathcal{M}
K uniformly random variable over \mathcal{K}
$\mathbf{C}=\operatorname{Enc}(\mathrm{K}, \mathrm{M})$ random variable over C
"The adversary should not learn any information about m."

An encryption scheme is perfectly secret if for every distribution of M and every $\mathrm{m} \in \mathcal{M}$ and $\mathrm{c} \in C$ $\operatorname{Pr}[\mathbf{M}=\mathbf{m}]=\operatorname{Pr}[\mathbf{M}=\mathbf{m} \mid \mathbf{C}=\mathbf{c}]$

Equivalently:

For all $\mathrm{m}, \mathrm{c}: \operatorname{Pr}[\mathrm{M}=\mathrm{m}]=\operatorname{Pr}[\mathrm{M}=\mathrm{m} \mid \mathrm{C}=\mathrm{c}]$

\mathbf{M} and $\mathbf{C = E n c}(K, M)$ are independent

For every m, m, c we have:
$\operatorname{Pr}[\operatorname{Enc}(K, m)=c]=\operatorname{Pr}\left[\operatorname{Enc}\left(K, m^{\prime}\right)=c\right]$

A perfectly secret scheme: one-time pad

> t - a parameter
> $\mathcal{K}=\mathcal{M}=\{0,1\}^{\mathrm{t}}$

Gilbert
Vernam
(1890-1960)

Correctness:

$$
\operatorname{Dec}_{k}\left(\operatorname{Enc}_{k}(m)\right)=\underset{m}{k} \oplus(k \oplus m)
$$

Generalized One-Time Pad

- One-time pad can be generalized to any finite group.
- Definition: A group (G,+) consists of a set \mathbf{G} and an operation $+: \mathbf{G} \times \mathbf{G} \rightarrow \mathbf{G}$
- Associative: $(x+y)+z=x+(y+z)$
- Commutative (abelian group): $x+y=y+x$
- Identity: there is an element 0 s.t. $0+x=x$.
- Inverses: for all x, there is $(-x)$ such that $x-x=0$.

Generalized One-Time Pad

- Examples of finite groups:
$-\mathbb{Z}_{n}=\{0, \ldots, n-1\}$ with addition modulo n.
- When $n=2$, this is bits with the xor operation!
$-\mathbb{Z}_{n}{ }^{t}$ vectors of length t , component-wise addition.
- The zero element is $\mathbf{0}=(0, \ldots, 0)$

Generalized One-Time Pad

One time pad can be generalized as follows.

Let (G,+) be a finite abelian group.
Let $\mathcal{K}=\mathcal{M}=C=\mathbf{G}$.

The following is a perfectly secret encryption scheme:

- $\operatorname{Enc}(\mathrm{k}, \mathrm{m})=\mathrm{m}+\mathrm{k}$
- $\operatorname{Dec}(k, c)=c-k$

Perfect secrecy of the one-time pad

- Theorem: The one-time pad over a finite group (G,+) satisfies perfect secrecy.
Proof: For any $m, m^{\prime}, c \in G$:

$$
\begin{aligned}
& \operatorname{Pr}[\operatorname{Enc}(K, m)=c] \\
& =\operatorname{Pr}[K+m=c] \\
& =\operatorname{Pr}[K=c-m] \\
& =\frac{1}{|G|} \\
& =\operatorname{Pr}\left[\operatorname{Enc}\left(K, m^{\prime}\right)=c\right]
\end{aligned}
$$

Why the one-time pad is not practical?

1. The key is as long as the message.
2. The key cannot be reused.
3. Alice and Bob must share a secret key unknown to Eve.

All three are necessary for perfect secrecy!

Enc: $\mathcal{K} \times \mathcal{M} \rightarrow C$, Dec : $\mathcal{K} \times C \rightarrow \mathcal{M}$

we have $|\mathcal{K}| \geq|\mathcal{M}|$.

Intuitive Proof:

Otherwise can do "exhaustive search". Given ciphertext c, try decrypting with every key k. Will rule-out at least 1 message.

Formal Proof:

Let M be the uniform distribution over \mathcal{M} and c be some ciphertext such that $\operatorname{Pr}[C=c]>0$.
Consider the set $\mathcal{M}^{\prime}=\{\operatorname{Dec}(k, c): k \in \mathcal{K}\}$.
If $|\mathcal{K}|<|\mathcal{M}|$ then exists $m \in \mathcal{M} / \mathcal{M}^{\prime}$. We have:

$$
\operatorname{Pr}[M=m \mid C=c]=0, \operatorname{Pr}[M=m]=1 /|\mathcal{M}|
$$

Practicality?

Generally, the one-time pad is not very practical, since the key has to be as long as the total length of the encrypted messages.

a KGB one-time pad hidden in a walnut shell

However, it is sometimes used because of the following advantages:

- perfect secrecy,
- short messages can be encrypted using pencil and paper .

In the 1960s the Americans and the Soviets established a hotline that was encrypted using the one-time pad.

Venona project (1946-1980)

American National Security Agency decrypted Soviet messages that were transmitted in the 1940s.

That was possible because the Soviets reused the keys in the one-time pad scheme.

Beyond Perfect Secrecy

- Need to move beyond perfect secrecy to get around Shannon's result.
- Intuitively, $|\mathcal{K}|<|\mathcal{M}|$ means that exhaustive search over keys will reveal something about message. But this might not be efficient!
- e.g., key is 128-bits, message is 10 GB.
- Will study: Secrecy against computationallybounded attackers.

The Authentication Problem

Encryption Is Not Enough

- Alice sends a 1-bit "vote" to Bob: $0=$ 'no', 1 = 'yes'.
- Alice encrypts with a one-time pad: vote stays secret from Eve.

Encryption Is Not Enough

- Alice sends a 1-bit "vote" to Bob: 0 = 'no', 1 = 'yes'.
- Alice encrypts with a one-time pad: vote stays secret from Eve.
- What if Eve modifies ciphertext?
- $c^{\prime}=0$ results in random vote. $c^{\prime}=c \bigoplus 1$, flips vote.

Authentication

Message Authentication Code (MAC)

Message space: \mathcal{M}, Key space: \mathcal{K}, Tag space: \mathcal{T}

- MAC : $\mathcal{K} \times \mathcal{M} \rightarrow \mathcal{T}$
- Usage:
- Alice computes $t=\operatorname{MAC}(k, m)$, sends (m, t) to Bob.
- Bob receives (m^{\prime}, t^{\prime}) and checks if $t^{\prime}=\operatorname{MAC}\left(k, m^{\prime}\right)$.

Message Authentication Code (MAC)

Message space: \mathcal{M}, Key space: \mathcal{K}, Tag space: \mathcal{T}

- MAC : $\mathcal{K} \times \mathcal{M} \rightarrow \mathcal{T}$
- Definition: 1-Time Statistically Secure MAC
- A uniformly random key k from \mathcal{K} is selected.
- Eve chooses message m and is given $t=\operatorname{MAC}(k, m)$.
- Eve chooses (m^{\prime}, t^{\prime}) s.t. $m^{\prime} \neq m$ and wins if

$$
\mathrm{t}^{\prime}=\mathrm{MAC}\left(\mathrm{k}, \mathrm{~m}^{\prime}\right) .
$$

ε-security: $\operatorname{Pr}[$ Eve wins $] \leq \varepsilon$
Can we make $\varepsilon=0$?

Useful Tool: Fields

Definition: A field ($F,+, \cdot$) consists of a set F and an addition (+) and multiplication (•) operations.

- Operations +, • are associative and commutative.
- Distributive: $x \cdot(y+z)=x \cdot y+x \cdot z$
- $(\mathrm{F},+)$ is a group with identity 0 .
- For all $x: x+0=x$
- For all x exists $(-x)$ such that $x-x=0$.
- $\left(\mathrm{F}^{*}, \cdot\right)$ is a group with identity 1 where $\mathrm{F}^{*}=\mathrm{F} /\{0\}$.
- For all $x \in \mathrm{~F}^{*}: \quad x \cdot \mathbf{1}=x$
- For all $x \in \mathrm{~F}^{*}$ exists (x^{-1}) such that $x \cdot x^{-1}=\mathbf{1}$.

Useful Tool: Fields

Examples of infinite fields:

- rational \mathbb{Q}, reals \mathbb{R}, complex \mathbb{C}.
- Not the integers!

There are finite fields.

- If p is a prime number then \mathbb{Z}_{p} is a finite field.
- Not true when p is not a prime.

MAC Construction

Let p be a prime number.
Message/Tag space: $\mathcal{M}=\mathcal{I}=\mathbb{Z}_{p}$
Key space: $\mathcal{K}=\mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
Define:
$\operatorname{MAC}(k, m)=x \cdot m+y \quad$ where $k=(x, y)$.

Proof of MAC Security

$\operatorname{MAC}(k, m)=x \cdot m+y$ where $k=(x, y)$, field $=\mathbb{Z}_{p}$.
Theorem: Above MAC has 1-time security with $\varepsilon=\frac{1}{p}$.
Proof: Let $K=(X, Y)$ be uniformly random.
For any m any t :

$$
\operatorname{Pr}[\operatorname{MAC}(K, m)=t]=\operatorname{Pr}[X \cdot m+Y=t]=\frac{1}{p} .
$$

For any $m \neq m^{\prime}$ any t, t^{\prime} :

$$
\begin{aligned}
& \operatorname{Pr}\left[\operatorname{MAC}\left(K, m^{\prime}\right)=t^{\prime}, \operatorname{MAC}(K, m)=t\right] \\
& =\operatorname{Pr}\left[X \cdot m^{\prime}+Y=t^{\prime}, X \cdot m+Y=t\right] \\
& =\operatorname{Pr}[X=x, Y=y]=\frac{1}{p^{2}} \text { where } x=\frac{t-t^{\prime}}{m-m^{\prime}}, y=t-x \cdot m
\end{aligned}
$$

Therefore: $\operatorname{Pr}\left[\operatorname{MAC}\left(K, m^{\prime}\right)=t^{\prime} \mid \operatorname{MAC}(K, m)=t\right]=\frac{1}{p}$.

Practicality?

Let p be a prime number.
Message/Tag space: $\mathcal{M}=\mathcal{T}=\mathbb{Z}_{p} \quad$ Key space: $\mathcal{K}=\mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
$\operatorname{MAC}(k, m)=x \cdot m+y \quad$ where $k=(x, y)$.

Can do MUCH better!

- Construction is not very practical:
- Key is twice as big as the message.
- Can only use key once to authenticate single message.

Better MAC Construction

- Key space: $\mathcal{K}=\mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
- Message $\mathcal{M}=\mathbb{Z}_{p}^{d}$ for any $d \geq 1$.
- Tag space: $\mathcal{I}=\mathbb{Z}_{p}$

For $k=(x, y)$ and $m=\left(m_{1}, \ldots, m_{d}\right)$ define $\operatorname{MAC}(k, m): \sum_{i=1}^{d} m_{i} x^{i}+y$

Proof of MAC Security

$\operatorname{MAC}(k, m): \sum_{i=1}^{d} m_{i} x^{i}+y$ where $k=(x, y)$, field $=\mathbb{Z}_{p}$
Theorem: Above MAC has 1-time security with $\varepsilon=\frac{d}{p}$.
Proof: Let $K=(X, Y)$ be uniformly random.
For any m any t :

$$
\operatorname{Pr}[\operatorname{MAC}(K, m)=t]=\operatorname{Pr}\left[\sum_{i=1}^{d} m_{i} X^{i}+Y=t\right]=\frac{1}{p} .
$$

For any $m \neq m^{\prime}$ any t, t^{\prime} :

$$
\operatorname{Pr}\left[\operatorname{MAC}\left(K, m^{\prime}\right)=t^{\prime}, \operatorname{MAC}(K, m)=t\right] \leq \frac{d}{p^{2}}
$$

Therefore: $\operatorname{Pr}\left[\operatorname{MAC}\left(K, m^{\prime}\right)=t^{\prime} \mid \operatorname{MAC}(K, m)=t\right] \leq \frac{d}{p}$.

Proof of MAC Security

$\operatorname{MAC}(k, m): \sum_{i=1}^{d} m_{i} x^{i}+y$ where $k=(x, y)$, field $=\mathbb{Z}_{p}$
Theorem: Above MAC has 1-time security with $\varepsilon=\frac{d}{p}$.

Example:

- Message size $=2^{33}$ bits (4GB).
- Set $p \in\left[2^{128}, 2^{129}\right]$ just 129 bit description!
- Set $d=2^{26}$. Think of message as d values in \mathbb{Z}_{p}. $-2^{26} 128=2^{33}$.
- Get security: $\varepsilon \leq 2^{-102}$ and key size 258 bits!

Practicality?

- Construction is still not very practical: can only use key once to authenticate single message.
- Unfortunately, cannot do much better if we want statistical security.
- Theorem: To authenticate q messages with security $\varepsilon=2^{-r}$ need key of size $(q+1) r$.
- Proof omitted.

Combining Encryption \& Authentication

- Can Encrypt then Authenticate ciphertext Send: $c=\operatorname{Enc}\left(k_{1}, m\right), t=\operatorname{MAC}\left(k_{2}, c\right)$

Secret Sharing

Secret Sharing

Secret Sharing

Secret Sharing

Secret Sharing : Definition

Message space \mathcal{M}, Share space S
Number of parties: n
Share : $\mathcal{M} \rightarrow S^{n}$ randomized algorithm
Rec: $S^{n} \rightarrow \mathcal{M}$

- Correctness: $\operatorname{Pr}[\operatorname{Rec}(\operatorname{Share}(m))=m]=1$
- Perfect Security: for all message distributions M and all sets $A \subseteq\{1, \ldots, n\}$ of size $|A|=n-1$:
- Let $\left(S_{1}, \ldots, S_{n}\right)=\operatorname{Share}(M)$ and $S_{A}:=\left\{S_{i}: i \in A\right\}$.
- Then the distributions of S_{A} and M are independent.

Secret Sharing : Construction

Message space $\mathcal{M}=\underline{\mathbb{Z}_{q}}$, Share space $S=\underline{\mathbb{Z}_{q}}$
Number of parties: n
Any finite
Share (m) :

group

- Choose s_{1}, \ldots, s_{n-1} uniformly at random
- Set $s_{n}:=m-\left(s_{1}+\cdots+s_{n-1}\right)$
$\operatorname{Rec}\left(s_{1}, \ldots, s_{n}\right)=s_{1}+\cdots+s_{n}$
Theorem: Above scheme has perfect secrecy
Proof: For any dist. M, any set $A=\{1, \ldots, \mathrm{n}\} /\{\mathrm{i}\}$ and any value s_{A}, m, we have $\operatorname{Pr}\left[S_{A}=s_{A} \mid M=m\right]=\frac{1}{q^{n-1}}$. Probability is same for all m means S_{A} and M are independent.
* For a fixed m, each choice of s_{A} corresponds to unique s_{1}, \ldots, s_{n-1}.

Threshold Secret Sharing

- Still have n parties with one share per party, but now also threshold t :
- Correctness: Any $t+1$ can recover the message.
- Security: Any t don't learn anything message.
- Previous case corresponds to $t=n-1$. Can we generalize to any t ?

Threshold Secret Sharing

Construction (Shamir Secret Sharing)

- Number of parties n, Threshold $t<n$.
- Message $\mathcal{M}=\mathbb{Z}_{q}$, Shares $S=\mathbb{Z}_{q}: q>n$ prime.
- Share(m) :
- Choose t random "coefficients" c_{1}, \ldots, c_{t} and set $c_{0}:=m$.
- Define polynomial $p(x)=\sum_{j=0}^{t} c_{j} x^{j}$
- Output $s_{i}=p(i)$.
- Recover($\left\{\left(i, s_{i}\right)\right\}$) : Lagrange Interpolation.

Lagrange Interpolation

Let z_{0}, \ldots, z_{t} be any distinct field elements in \mathbb{Z}_{q}.
Theorem: There is an (efficiently computable) bijection between

- Coefficients: $\left(c_{0}, \ldots, c_{t}\right)$ giving poly $p(x)=\sum_{j=0}^{t} c_{j} x^{j}$
- Evaluations: $s_{0}=p\left(z_{0}\right), \ldots, s_{t}=p\left(z_{t}\right)$.

Proof:

- Coefficients \rightarrow evaluations: easy - evaluate!
- Evaluations \rightarrow coefficients:
- Let $p_{i}(x):=\prod_{j \neq i} \frac{x-z_{j}}{z_{i}-z_{j}}$. Then $p_{i}\left(z_{i}\right)=1, p_{i}\left(z_{j}\right)=0$ for $j \neq i$.
- Let $p(x):=\sum_{i=0}^{t} s_{i} \cdot p_{i}(x)$. Then $p\left(z_{i}\right)=s_{i}$.

Threshold Secret Sharing

Construction (Shamir Secret Sharing)

- Share (m) :
- Choose t random "coefficients" c_{1}, \ldots, c_{t} and set $c_{0}:=m$.
- Define polynomial $p(x)=\sum_{j=0}^{t} c_{j} x^{j}$
- Output $s_{i}=p(i)$.
- Recover($\left\{\left(i, s_{i}\right)\right\}$) : Lagrange Interpolation.

Theorem: Shamir Secret Sharing has perfect secrecy. Proof: For any message m, any t distinct points $z_{1}, \ldots, z_{t} \subseteq \mathbb{Z}_{q} /\{0\}$ and values s_{1}, \ldots, s_{t} we have

$$
\operatorname{Pr}\left[p\left(z_{1}\right)=s_{1}, \ldots, p\left(z_{t}\right)=s_{t} \mid M=m\right]=\frac{1}{q^{t}}
$$

Since, once we fix $p(0)=c_{0}=m$, each choice of s_{1}, \ldots, s_{t} corresponds to unique choice of c_{1}, \ldots, c_{t}.

Summary

- Saw:
- "perfectly secure" encryption, secret sharing
- "statistically secure" message authentication
- No restrictions on attacker computational power
- Big limitations:
- One-time use per key.
- For encryption, | message | < | key |

Some of the slides and slide contents are taken from http://www.crypto.edu.pl/Dziembowski/teaching and fall under the following:
©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation.

