
Historical cryptography

cryptography  encryption
main applications:  military and diplomacy

ancient times world war II



Historical cryptography

• All “historical” cryptosystems badly broken! 

• No clear understanding or science of what 
properties are needed. 

• Honest users and attackerss are humans with 
limited computational capabilities. 



Modern cryptography
cryptography based on rigorous science/math

sevenites now

public-key cryptography

e-cash

electronic voting

coin-tossing

multiparty-computations

zero-knowledge

electronic auctions

signature schemes

post-war

information
theory

rigorous definitions ...

private info 
retreival 

threshold crypto



What happened?

Theory

information 
theory +

computational 
complexity 

can reason about 
security in a 
formal way.

Technology

afforadable 
hardware

Demand

companies and 
individuals start to 
do business 
electronically



Modern cryptography

• Rigorous definitions of what it means to have  
secure encryption, signature, …

• Elegant constructions using number theory, algebra. 
(Still many ad-hoc constructions, we’ll ignore them)

• Proofs of security  

– usually rely on simple-to-state, well-studied “hardness 
assumption”.



In many areas of computer science formal proofs are not essential.

For example, instead of proving that an algorithm is efficient, 
we can just simulate it on a  “typical input”.

Provable security – the motivation

In cryptography we can’t experimentally demonstrate security. 
A notion of a “typical attacker” does not make sense.
Can’t run a test to check non-existence of an attack. 

Need proofs! 



This course is about...

• Main focus: how can we rigorously define security 
requirements, reason about them, use math to 
achieve them?

• Cover: basic cryptographic primitives: encryption, 
authentication, hash functions, signatures...

– Some advanced topics, mostly towards the end.

– Emphesize elegant ideas and constructions                 
over ad-hoc methods and schemes used in practice. 



This course is not about

• practical data security (firewalls, intrusion-detection, VPNs, 
etc.),

• Implementing cryptography: many pitfalls

• history of cryptography,

• number theory and algebra 

(we will use them only as tools)

• complexity theory.



The Encryption Problem



Encryption Schemes
(a very general picture)

Encryption scheme = encryption & decryption procedures

encryption ciphertext c decryption mplaintext m

should not learn m

Alice Bob

Eve



Kerckhoffs' principle
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Auguste Kerckhoffs (1883):
The enemy knows the system

The cipher should remain secure even 
if the adversary knows the 
specification of the cipher.

The only thing that is secret is a 

key k

that is usually chosen uniformly at random
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A more refined picture

plaintext m encryption ciphertext c decryption m

key k key k

doesn’t know k
should not learn m



Kerckhoffs' principle: motivation

1. It is unrealistic to assume that the design details remain 
secret. Too many people need to know. Software/hardware 
can be reverse-engineered!

2. Pairwise-shared keys are easier to protect, generate and 
replace.

3. The design details can be discussed and analyzed in public.  

4. What would it even mean formally that the specification is 
unknown? Does it have a distribution?

Not respecting this principle 
=

``security by obscurity”.



A mathematical view
K – key space:                       

M – plaintext space

C - ciphertext space

An encryption scheme is a pair (Enc,Dec), where

 Enc : K × M → C is an encryption algorithm,

 Dec : K × C → M is an decryption algorithm.

We will sometimes write Enck(m) and Deck(c) instead of Enc(k,m)
and Dec(k,c).

Correctness

for every k, m we should have Deck(Enck(m)) = m.



Idea 1:  Shift cipher

M = words over alphabet {A,...,Z} ≈ {0,...,25} 

K = {0,...,25} 

Enck(m0,...,mn) = (k+m0 mod 26,..., k+mn mod 26)

Deck(c0,...,cn) = (k+c0 mod 26,..., k+cn mod 26)

Cesar: k = 3



Security of the shift cipher

How to break the shift cipher?
Check all possible keys!

Let c be a ciphertext.

For every k Є {0,...,25} check if Deck(c) “makes sense”.

Most probably only one such k exists.

Thus Deck(c) is the message.

This is called a brute force attack.
Moral: the key space needs to be large!
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Idea 2: Substitution cipher

A B C D E F G H I J K L M N O P R S T U W V X Y Z

A B C D E F G H I J K L M N O P R S T U W V X Y Z

M = words over alphabet {A,...,Z} ≈ {0,...,25} 
K = a set of permutations of {0,...,25} 

π

Encπ(m0,...,mn) = (π(m0),..., π(mn))

Decπ(c0,...,cn) = (π-1(c0),..., π-1(cn))
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How to break the substitution cipher?

Use statistical patterns of the 
language.

For example: the frequency 
tables.

Texts of 50 characters can 
usually be broken this way.
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Other famous “bad” ciphers

Vigenère cipher:

Blaise de Vigenère
(1523 - 1596)

Leon Battista Alberti
(1404 – 1472) 

Enigma

Marian Rejewski
(1905 - 1980)

Alan Turing
(1912-1954)



Perfectly Secure Encryption

Constructions & Limitations



Defining “security of an encryption scheme” is not 
trivial.

(m – a message)

1. the key K is chosen uniformly at random

2. C := EncK(m) is given to the adversary

consider the following experiment

how to define 
security

?



Idea 1

“The adversary should not be able to learn K.”

the encryption scheme that “doesn’t encrypt”: 

EncK(m) = m
satisfies this definition!

A problem

An idea

(m – a message)

1. the key K is chosen uniformly at random 

2. C := EncK(m) is given to the adversary



Idea 2

“The adversary should not be able to learn m.”

What if the adversary can compute, e.g., the first half of m?

A problem

An idea

m1 ... m|m|/2 ? ... ?

(m – a message)

1. the key K is chosen uniformly at random 

2. C := EncK(m) is given to the adversary



Idea 3

“The adversary should not learn any information about m.”

Sounds great! But what does it actually mean?
How to formalize it?

(m – a message)

1. the key K is chosen uniformly at randomly

2. C := EncK(m) is given to the adversary

An idea

Need some probability theory.  



Eve knows that 

Example

m := 

“I love you”              with prob. 0.1

“I don’t love you”    with prob. 0.7

“I hate you”              with prob. 0.2

m

Eve still knows that 

m := 

“I love you”              with prob. 0.1

“I don’t love you”    with prob. 0.7

“I hate you”              with prob. 0.2

m

k c := EncK(m)



Probability Theory (review)

• Probability space:  

– Universe 𝒰

– Probability function: for all u ∈ 𝒰, assign 0 ≤ Pr 𝑢 ≤ 1
such that σ𝑢∈𝒰 Pr[𝑢] = 1.

• Example: uniform distribution over 𝒰 = 0,1 2

assigns Pr 00 = Pr 01 = Pr 10 = Pr 11 =
1

4
.   



Probability Theory (review)

• Probability space:  

– Universe 𝒰

– Probability function: for all u ∈ 𝒰, assign 0 ≤ Pr 𝑢 ≤ 1
such that σ𝑢∈𝒰 Pr[𝑢] = 1.

• Random variables: 𝑋, 𝑌, 𝑍, …

– Formally, functions  𝑋 ∶ 𝒰 → 𝒳, 𝑌: 𝒰 → 𝒴…

– induce distributions  Pr 𝑋 = 𝑥 = σ 𝑢∶𝑋 𝑢 =𝑥 Pr[𝑢]

• Example: uniform distribution over 𝒰 = 0,1 2

– 𝑋 = first bit, Y = second bit, Z ≔ 𝑋 + 𝑌, 𝑊 ≔ 𝑋⊕ 𝑌



Probability Theory (review)

• Probability space:  

– Universe 𝒰

– Probability function: for all u ∈ 𝒰, assign 0 ≤ Pr 𝑢 ≤ 1
such that σ𝑢∈𝒰 Pr[𝑢] = 1.

• Random variables: 𝑋, 𝑌, 𝑍, …

– Formally, functions  𝑋 ∶ 𝒰 → 𝒳, 𝑌: 𝒰 → 𝒴…

– induce distributions  Pr 𝑋 = 𝑥 = σ 𝑢∶𝑋 𝑢 =𝑥 Pr[𝑢]

• Random variables 𝑋, 𝑌 are independent if for all x,y: 
Pr 𝑋 = 𝑥, 𝑌 = 𝑦 = Pr 𝑋 = 𝑥 ⋅ Pr[𝑌 = 𝑦]



Probability Theory (review)

• Example: uniform distribution over 𝒰 = 0,1 2

– 𝑋 = first bit,  Y = second bit, Z ≔ 𝑋 + 𝑌, 𝑊 ≔ 𝑋⊕ 𝑌

• Are  𝑋, 𝑌 independent?   

• Are 𝑋, 𝑍 independent? 

• Are 𝑋,𝑊 independent? 



Probability Theory (review)
• For two random variables 𝑋, 𝑌 and outcomes 𝑥, 𝑦 we 

define the conditional probability:

Pr[𝑋 = 𝑥|𝑌 = 𝑦] =
Pr 𝑋=𝑥,𝑌=𝑦

Pr[𝑌=𝑦]

• Interpretation: the probability that 𝑋 = 𝑥 if we are told 
that 𝑌 = 𝑦.

• Example: uniform distribution over 𝒰 = 0,1 2

– 𝑋 = first bit,  Y = second bit, Z ≔ 𝑋 + 𝑌, 𝑊 ≔ 𝑋⊕ 𝑌

– Pr 𝑋 = 1 𝑍 = 1] = ?



Probability Theory (review)
• Events: An event 𝐸 is a subset 𝒰. We define Pr[𝐸] =

σ 𝑢∈𝐸 Pr[𝑢].  

Alternatively, can think of 𝐸 as binary random var.

• Union bound: for any events 𝐸1, 𝐸2:

Pr[𝐸1 ∪ 𝐸2] = Pr 𝐸1 + Pr 𝐸2 − Pr[𝐸1 ∩ 𝐸2]

≤ Pr 𝐸1 + Pr 𝐸2

• Example: uniform distribution over 𝒰 = 0,1 2

– Events 𝐸1: first bit 1,  𝐸2 : second bit 1.



Back to cryptography…

Consider random variables:

M some random variable over M  
K uniformly random variable over K 
C = Enc(K, M)   random variable over C 

“The adversary should not learn any information about m.”



An encryption scheme is perfectly secret if 

for every distribution of M

and every m Є M and c Є C

Pr[ M = m ] = Pr[ M = m | C = c ]

“The adversary should not learn any information about m.”

such that 
P[C = c] > 0



Equivalently:

For every m , m’ , c  we have:
Pr[ Enc(K, m) = c]    =    Pr[ Enc(K, m’) = c] 

For all m, c:  Pr[ M = m ] = Pr[ M = m | C = c]

M and C=Enc(K,M) are independent
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A perfectly secret scheme: one-time pad

Gilbert 
Vernam
(1890 –1960) 

t – a parameter
K = M = {0,1}t

Enck(m) = k ⊕m
Deck(c) = k ⊕ c

Vernam’s cipher:

component-wise xor

Correctness:

Deck(Enck(m)) = k ⊕ (k ⊕ m)

m



Generalized One-Time Pad

• One-time pad can be generalized to any finite 
group. 

• Definition: A group (G,+) consists of a set G and 
an operation   +  :  G × G → G

– Associative: (x + y) + z = x + (y + z) 

– Commutative (abelian group):   x + y = y + x   

– Identity: there is an element 0 s.t. 0 + x = x.

– Inverses: for all x, there is (- x)  such that x – x = 0.



Generalized One-Time Pad

• Examples of finite groups:

– ℤ𝑛 = {0,… , 𝑛 − 1} with addition modulo 𝑛.

• When 𝑛 = 2, this is bits with the xor operation! 

– ℤ𝑛
𝑡 vectors of length t,  component-wise addition.

• The zero element is 𝟎 = (0,… , 0)



Generalized One-Time Pad

One time pad can be generalized as follows.

Let (G,+) be a finite abelian group.  

Let K = M = C = G.

The following is a perfectly secret encryption scheme:

• Enc(k, m) = m + k

• Dec(k, c) = c – k



Perfect secrecy of the one-time pad

• Theorem: The one-time pad over a finite group (G,+)
satisfies perfect secrecy.

• Proof: For any 𝑚, 𝑚′, 𝑐 ∈ 𝐺:

Pr[ Enc(𝐾,𝑚) = 𝑐 ]
= Pr[𝐾 +𝑚 = 𝑐]
= Pr[𝐾 = 𝑐 − 𝑚]

=
1

|𝐺|

= Pr[ Enc(𝐾,𝑚′) = 𝑐 ]
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Why the one-time pad is not practical?

1. The key is as long as the message.

2. The key cannot be reused.

3. Alice and Bob must share a secret key unknown to Eve.

All three are necessary for perfect secrecy! 
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Theorem (Shannon 1949)
“One time-pad is optimal”

In every perfectly secret encryption scheme

Enc : K × M → C , Dec : K × C → M 
we have |K| ≥ |M|.

Formal Proof:

Let 𝑀 be the uniform distribution over M and 𝑐 be some ciphertext
such that Pr 𝐶 = 𝑐 > 0. 
Consider the set M’ = { Dec(𝑘, 𝑐) ∶ 𝑘 ∈K }. 
If|K| < |M|then exists 𝑚 ∈M / M’. We have:

Pr 𝑀 = 𝑚 𝐶 = 𝑐] = 0 , Pr 𝑀 = 𝑚 = 1/|M|.

Intuitive Proof:
Otherwise can do “exhaustive search”. Given ciphertext c, try 
decrypting with every key k. Will rule-out at least 1  message.   
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Practicality?
Generally, the one-time pad is not very practical, since the key 
has to be as long as the total length of the encrypted messages.

However, it is sometimes used 
because of the following 
advantages:
• perfect secrecy,
• short messages can be encrypted

using pencil and paper .

In the 1960s the Americans and the Soviets established a hotline that 
was encrypted using the one-time pad.

a KGB one-time pad hidden
in a walnut shell
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Venona project (1946 – 1980)

American National Security Agency
decrypted Soviet messages that were 
transmitted in the 1940s.

That was possible because the Soviets 
reused the keys in the one-time pad 
scheme.Ethel and Julius Rosenberg



Beyond Perfect Secrecy

• Need to move beyond perfect secrecy to get around 
Shannon’s result.

• Intuitively, |K| < |M| means that exhaustive 
search over keys will reveal something about 
message. But this might not be efficient! 

– e.g.,  key is 128-bits, message is 10 GB.

• Will study: Secrecy against computationally-
bounded attackers.



The Authentication Problem
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Encryption Is Not Enough

plaintext m encryption ciphertext c decryption m

key k key k

• Alice sends a 1-bit “vote” to Bob:  0 = ‘no’, 1 = ‘yes’.
• Alice encrypts with a one-time pad: vote stays secret from Eve.
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Encryption Is Not Enough

plaintext m encryption
c

decryption m’

key k key k

• Alice sends a 1-bit “vote” to Bob:  0 = ‘no’, 1 = ‘yes’.
• Alice encrypts with a one-time pad: vote stays secret from Eve.
• What if Eve modifies ciphertext?

• c’=0 results in random vote.  c’ =c ⊕ 1, flips vote.

c'
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Authentication

plaintext m Authenticate
m, t

Verify
m’=m  

or 
“reject” 

key k key k

m’, t’



Message Authentication Code (MAC)

Message space: M,  Key  space: K,   Tag space: T

• MAC : K × M → T

• Usage:

– Alice computes 𝑡 = MAC(𝑘,𝑚), sends (𝑚, 𝑡) to Bob.

– Bob receives (𝑚′, 𝑡′) and checks if 𝑡′ =MAC(𝑘,𝑚′). 



Message Authentication Code (MAC)

Message space: M,  Key  space: K,   Tag space: T

• MAC : K × M → T

• Definition: 1-Time Statistically Secure MAC  

– A uniformly random key k from K is selected. 

– Eve chooses message  m and is given  t = MAC(k, m).

– Eve chooses   (m’, t’) s.t. m’ ≠ m and wins if

t’ = MAC(k,m’).

𝜀-security:   Pr[ Eve wins ] ≤ 𝜀
Can we make 

𝜀 = 0?



Useful Tool: Fields

Definition: A field (F, +, ⋅ )  consists of a set F and an 
addition (+) and multiplication (⋅) operations.

• Operations  +, ⋅ are associative and commutative. 

• Distributive:   𝑥 ⋅ 𝑦 + 𝑧 = 𝑥 ⋅ 𝑦 + 𝑥 ⋅ 𝑧

• (F,+) is a group with identity 0.

– For all 𝑥:   𝑥 + 0 = 𝑥

– For all 𝑥 exists (−𝑥) such that 𝑥 − 𝑥 = 0.

• (F*, ⋅) is a group with identity 1 where F* = F/{0}.

– For all 𝑥 ∈F*:     𝑥 ⋅ 𝟏 = 𝑥

– For all 𝑥 ∈F* exists (𝑥−1) such that 𝑥 ⋅ 𝑥−1 = 𝟏.



Useful Tool: Fields

Examples of infinite fields:

– rational  ℚ,     reals ℝ,    complex ℂ.

– Not the integers! 

There are finite fields. 

– If 𝑝 is a prime number then ℤ𝑝 is a finite field. 

– Not true when 𝑝 is not a prime. 



MAC Construction

Let 𝑝 be a prime number. 

Message/Tag space: M= T=ℤ𝑝
Key  space: K = ℤ𝑝 × ℤ𝑝. 

Define:

MAC(𝑘,𝑚) = 𝑥 ⋅ 𝑚 + 𝑦 where 𝑘 = (𝑥, 𝑦).



Proof of MAC Security
MAC(𝑘,𝑚) = 𝑥 ⋅ 𝑚 + 𝑦 where 𝑘 = 𝑥, 𝑦 ,  field=ℤ𝑝.

Theorem: Above MAC has 1-time security with 𝜀 =
1

𝑝
. 

Proof: Let 𝐾 = (𝑋, 𝑌) be uniformly random. 

For any   𝑚 any 𝑡: 

Pr MAC 𝐾,𝑚 = 𝑡 = Pr[𝑋 ⋅ 𝑚 + 𝑌 = 𝑡] =
1

𝑝
.

For any   𝑚 ≠ 𝑚′ any 𝑡, 𝑡′:

Pr MAC 𝐾,𝑚′ = 𝑡′, MAC 𝐾,𝑚 = 𝑡

=Pr 𝑋 ⋅ 𝑚′ + 𝑌 = 𝑡′, 𝑋 ⋅ 𝑚 + 𝑌 = 𝑡

=Pr 𝑋 = 𝑥, 𝑌 = 𝑦 =
1

𝑝2
where 𝑥 =

𝑡−𝑡′

𝑚−𝑚′ , 𝑦 = 𝑡 − 𝑥 ⋅ 𝑚

Therefore:  Pr MAC 𝐾,𝑚′ = 𝑡′ | M𝐀𝐂 𝐾,𝑚 = 𝑡 =
1

𝑝
.



Practicality?

Let 𝑝 be a prime number. 

Message/Tag space: M= T= ℤ𝑝 Key  space: K = ℤ𝑝 × ℤ𝑝. 

MAC(𝑘,𝑚) = 𝑥 ⋅ 𝑚 + 𝑦 where 𝑘 = (𝑥, 𝑦).

• Construction is not very practical:
– Key is twice as big as the message.

– Can only use key once to authenticate single message.

Can do MUCH 
better!



Better MAC Construction

• Key  space: K = ℤ𝑝 × ℤ𝑝. 

• Message    M= ℤ𝑝
𝑑 for any 𝑑 ≥ 1.

• Tag space: T= ℤ𝑝

For 𝑘 = (𝑥, 𝑦) and 𝑚 = (𝑚1, … ,𝑚𝑑)

define  MAC(𝑘,𝑚) : σ𝑖=1
𝑑 𝑚𝑖𝑥

𝑖 + 𝑦



Proof of MAC Security
MAC(𝑘,𝑚) : σ𝑖=1

𝑑 𝑚𝑖𝑥
𝑖 + 𝑦 where 𝑘 = 𝑥, 𝑦 ,  field=ℤ𝑝

Theorem: Above MAC has 1-time security with 𝜀 =
𝑑

𝑝
. 

Proof: Let 𝐾 = (𝑋, 𝑌) be uniformly random. 

For any   𝑚 any 𝑡: 

Pr MAC 𝐾,𝑚 = 𝑡 = Pr[σ𝑖=1
𝑑 𝑚𝑖𝑋

𝑖 + 𝑌 = 𝑡] =
1

𝑝
.

For any   𝑚 ≠ 𝑚′ any 𝑡, 𝑡′:

Pr MAC 𝐾,𝑚′ = 𝑡′, MAC 𝐾,𝑚 = 𝑡 ≤
𝑑

𝑝2

Therefore:  Pr MAC 𝐾,𝑚′ = 𝑡′ | M𝐀𝐂 𝐾,𝑚 = 𝑡 ≤
𝑑

𝑝
.



Proof of MAC Security
MAC(𝑘,𝑚) : σ𝑖=1

𝑑 𝑚𝑖𝑥
𝑖 + 𝑦 where 𝑘 = 𝑥, 𝑦 ,  field=ℤ𝑝

Theorem: Above MAC has 1-time security with 𝜀 =
𝑑

𝑝
.     

Example: 

• Message size = 233 bits (4 GB).

• Set 𝑝 ∈ [2128, 2129] just 129 bit description! 

• Set 𝑑 = 226.  Think of message as d values in   ℤ𝑝. 
– 226128 = 233. 

• Get security:  𝜀 ≤ 2−102 and key size 258 bits! 



Practicality?

• Construction is still not very practical: can only use 
key once to authenticate single message.

• Unfortunately, cannot do much better if we want 
statistical security. 

• Theorem: To authenticate 𝑞 messages with security 
𝜀 = 2−𝑟 need key of size (𝑞 + 1)𝑟.
– Proof omitted.



Combining Encryption & 
Authentication

• Can Encrypt then Authenticate ciphertext

Send:  𝑐 = Enc 𝑘1, 𝑚 ,  𝑡 = 𝐌𝐀𝐂(𝑘2, 𝑐)



Secret Sharing



Secret Sharing

s1

s2

s3

s4

s5

s6

Secret Message 
m

𝑠1, … , 𝑠𝑛 =Share(𝑚)



Secret Sharing

s1

s2

s3

s4

s5

s6

No information about m



Secret Sharing

s1

s2

s3

s4

s5

s6

Recover
m

𝑚 = R𝐞𝐜(𝑠1, … , 𝑠𝑛)



Message space M ,   Share space S
Number of parties: 𝑛

Share  : M → S𝑛 randomized algorithm
Rec : S𝑛→M

• Correctness:    Pr[ Rec( Share(𝑚) ) = 𝑚] =1
• Perfect Security: for all message distributions 𝑀 and all 

sets 𝐴 ⊆ {1,… , 𝑛} of size 𝐴 = 𝑛 − 1 :
– Let (𝑆1, … , 𝑆𝑛) = Share(𝑀) and 𝑆𝐴 ≔ { 𝑆𝑖 ∶ 𝑖 ∈ 𝐴}.
– Then the distributions of 𝑆𝐴 and 𝑀 are independent.

Secret Sharing : Definition



Message space M =ℤ𝑞,   Share space S =ℤ𝑞
Number of parties: 𝑛

Share(𝑚) :
– Choose 𝑠1, … , 𝑠𝑛−1 uniformly at random
– Set  𝑠𝑛 ≔ 𝑚 − (𝑠1 +⋯+ 𝑠𝑛−1)

Rec 𝑠1, … , 𝑠𝑛 = 𝑠1 +⋯+ 𝑠𝑛

Theorem: Above scheme has perfect secrecy
Proof: For any dist. 𝑀, any set  𝐴 = 1,… , n /{i} and any value 𝑠𝐴, 
𝑚, we have Pr[𝑆𝐴 = 𝑠𝐴 | 𝑀 = 𝑚] =

1

𝑞𝑛−1
.* Probability is same for 

all 𝑚 means 𝑆𝐴 and 𝑀 are independent.

* For a fixed 𝑚, each choice of 𝑠𝐴 corresponds to unique 𝑠1, … , 𝑠𝑛−1.

Secret Sharing : Construction

Any finite 
group



• Still have 𝑛 parties with one share per party, but 
now also threshold 𝑡:

– Correctness: Any 𝑡 + 1 can recover the message.

– Security:  Any 𝑡 don’t learn anything message.

• Previous case corresponds to 𝑡 = 𝑛 − 1. Can we 
generalize to any 𝑡?

Threshold Secret Sharing



Construction (Shamir Secret Sharing)

• Number of parties 𝑛, Threshold 𝑡 < 𝑛.

• Message M =ℤ𝑞,   Shares S =ℤ𝑞:  𝑞 > 𝑛 prime. 

• Share(𝑚) : 

– Choose 𝑡 random “coefficients” 𝑐1, … , 𝑐𝑡 and set 𝑐0 ≔ 𝑚.

– Define polynomial 𝑝 𝑥 = σ𝑗=0
𝑡 𝑐𝑗𝑥

𝑗

– Output 𝑠𝑖 = 𝑝(𝑖).

• Recover( { 𝑖, 𝑠𝑖 } ) : Lagrange Interpolation.

Threshold Secret Sharing

Any finite 
field



Lagrange Interpolation
Let 𝑧0, … , 𝑧𝑡 be any distinct field elements in ℤ𝑞. 

Theorem: There is an (efficiently computable) bijection
between  

– Coefficients:  (𝑐0, … , 𝑐𝑡)  giving poly 𝑝 𝑥 = σ𝑗=0
𝑡 𝑐𝑗𝑥

𝑗

– Evaluations:   𝑠0 = 𝑝 𝑧0 , … , 𝑠𝑡 = 𝑝(𝑧𝑡).

Proof:
• Coefficients → evaluations: easy – evaluate!
• Evaluations → coefficients: 

– Let 𝑝𝑖 𝑥 ≔ ς𝑗≠𝑖
𝑥−𝑧𝑗

𝑧𝑖−𝑧𝑗
. Then  𝑝𝑖 𝑧𝑖 = 1, 𝑝𝑖 𝑧𝑗 = 0 for 𝑗 ≠ 𝑖.

– Let 𝑝 𝑥 ≔ σ𝑖=0
𝑡 𝑠𝑖 ⋅ 𝑝𝑖(𝑥).  Then 𝑝 𝑧𝑖 = 𝑠𝑖 . 



Construction (Shamir Secret Sharing)
• Share(𝑚) : 

– Choose 𝑡 random “coefficients” 𝑐1, … , 𝑐𝑡 and set 𝑐0 ≔ 𝑚.

– Define polynomial 𝑝 𝑥 = σ𝑗=0
𝑡 𝑐𝑗𝑥

𝑗

– Output 𝑠𝑖 = 𝑝(𝑖).

• Recover( { 𝑖, 𝑠𝑖 } ) : Lagrange Interpolation.

Threshold Secret Sharing

Theorem: Shamir Secret Sharing has perfect secrecy.
Proof: For any message 𝑚, any 𝑡 distinct points 
𝑧1, … , 𝑧𝑡 ⊆ ℤ𝑞/{0} and values 𝑠1, … , 𝑠𝑡 we have

Pr 𝑝 𝑧1 = 𝑠1, … , 𝑝 𝑧𝑡 = 𝑠𝑡 𝑀 = 𝑚] =
1

𝑞𝑡

Since, once we fix 𝑝 0 = 𝑐0 = 𝑚,  each choice of 
𝑠1, … , 𝑠𝑡 corresponds to unique choice of 𝑐1, … . , 𝑐𝑡.



Summary

• Saw:

– “perfectly secure” encryption, secret sharing

– “statistically secure” message authentication 

• No restrictions on attacker computational power

• Big limitations:

– One-time use per key. 

– For encryption, | message | <  | key |
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