
Graduate Cryptography September 18, 2017

Problem Set 1

Lecturer: Daniel Wichs Due: Sept 27, 2017

Problem 1 (t-wise independent hash) 10 pts

A hash function h : K × U → V is t-wise independent if for all t distinct
values x1, . . . , xt ∈ U and any y1, . . . , yt ∈ V we have

Pr[h(K,x1) = y1, . . . , h(K,xt) = yt] =
t∏

i=1

Pr[h(K,xi) = yi] =
1

|V|t

where K is a random variable that’s uniform over K.
Use the ideas we saw in class about polynomials over a finite field F

(e.g., in the construction of one-time MACs and Shamir secret sharing) to
construct such a scheme for any t with K = Ft and U = V = F.

Show how to use the above to construct a message authentication code
(MAC) which can be securely used to authenticate up to (t− 1) messages.

Problem 2 (Two-time Security?) 10 pts

We showed that the one-time pad is a perfectly secure “one-time” encryp-
tion scheme that allows us to encrypt a single message. In this problem, we
want to define two-time encryption that can be used to encrypt 2 messages
and more generally t-time encryption.

Part A: Here is a natural way to define two-time perfect secrecy for en-
cryption. For any two pairs of messages (m0,m1) ∈M×M and (m′

0,m
′
1) ∈

M×M and for any ciphertexts c0, c1 we have

Pr[Enc(K,m0) = c0,Enc(K,m1) = c1] = Pr[Enc(K,m′
0) = c0,Enc(K,m′

1) = c1]

Show that no encryption scheme can satisfy this definition.
Part B: To overcome the limitation in part A, we first relax the problem

by considering statistical security where we require that for all (m0,m1), (m
′
0,m

′
1) ∈

M×M

SD( (Enc(K,m0),Enc(K,m1)) , (Enc(K,m′
0),Enc(K,m′

1)) ) ≤ ε
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Show that, even with this relaxation, no encryption scheme with a deter-
ministic encryption procedure can satisfy the above with ε < 1.

Part C: We relax the problem further by considering randomized en-
cryption schemes where, for a fixed k,m the encryption procedure Enc(k,m)
can additional randomness to create the ciphertext. We require perfect cor-
rectness so that for all m ∈ M, k ∈ K : Pr[Dec(k,Enc(k,m)) = m] = 1
where the probability is over the randomness of the encryption procedure.
Show that there exists a randomized encryption scheme that achieves the
above for arbitrarily small ε.

(Hint: Use t-wise independent hash functions from the previous problem
with t = 2. Let the encryption procedure call the hash function on a random
input to derive a new “ one-time pad” key on each invocation.)

Part D: Go back to part A and generalize your proof to randomized
encryption schemes. In other words, show that no randomized encryption
scheme can achieve statistical two-time security with ε = 0.

Problem 3 (Refreshing Secret Sharing) 10 pts

A secret is shared across n computers using Shamir Secret Sharing with
a threshold t ≥ 2 (t parties learn nothing, t + 1 can recover the secret).
Every morning, a determined hacker can choose to compromise any one of
the computers. The computer stays compromised for an entire day meaning
that the adversary can see everything that happens on it during that day.
However, by the following morning the hack is guaranteed to be discovered
and the attacker is booted off from the computer. The attacker can then
hack a new computer that morning (potentially the same one as the previous
morning) and so it goes day after day for ever.

We want to make sure the attacker never learns the shared secret. To
do so, we want to have a protocol that the n computers can run once a day
to “refresh” their shares. The attacker sees everything that happens on the
compromised computer during the run of the protocol. Design a protocol to
solve this problem and argue that it is secure.

Problem 4 (Statistical Distance) 10 pts

Part A: Let X be uniformly random over {1, . . . , n} and let Y be uniformly
random over {1, . . . , n+1}. What’s the statistical distance SD(X,Y )? If we
think of n as a security parameter, are the two distributions computationally
indistinguishable (justify your answer)?
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Part B: Show that for any function G : {0, 1}n → {0, 1}n+1 the
statistical distance between G(Un) and Un+1 is at least 1/2 where U` denotes
the uniform distribution over {0, 1}`.

Part C: Show that statistical distance obeys the triangle inequality:
SD(X,Z) ≤ SD(X,Y ) + SD(Y, Z).

Part D: Show that for any function f and any random variables X,Y
we have SD(f(X), f(Y )) ≤ SD(X,Y ).

Problem 5 (Alternate Definition) 10 pts

Our definition of one-time computationally secure encryption considered two
games OneSecb with b = 0, 1 which we required to be computationally indis-
tinguishable. An alternate definition considers a single game AltOneSec(n)
which proceeds as follows:

• The adversary A(n) chooses messages m0,m1 and gives them to the
challenger

• The challenger chooses a uniformly random bit b ← {0, 1} and key
k ← {0, 1}n. It encrypts the message mb by setting c = Enc(k,mb)
and gives c to the adversary.

• The adversary outputs a “guess” b′ and the game outputs 1 if b = b′

and 0 otherwise.

For an adversary A, we define AltOneSecA(n) to be a random variable
denoting the output of the above game when played with A. An encryption
scheme is then defined to be secure if for all PPT A there is some negligible
ε such that |Pr[AltOneSecA(n) = 1]− 1

2 | = ε(n).
Show that the alternate definition is equivalent to the one we gave in

class, meaning that a scheme is secure according to one definition if and only if
it is secure according to the other one.

PS1, Page 3


