
CS 7880 Graduate Cryptography September 18, 2017

Lecture 4: Computationally secure cryptography

Lecturer: Daniel Wichs Scribe: Lucianna Kiffer

1 Topic Covered

• ε-security

• Computationally secure cryptography (asymptotic security)

• Computational indistinguishability

• Interactive model of security

2 ε-security

Recall that the statistical distance between two distributions is defined as follows:

SD(X,Y) =
1

2

∑
z

|Pr[X = Z] = Pr[Y = Z]|

= max
D⊆Z

|Pr[x ∈ D]− Pr[y ∈ D]|

= max
D:Z→{0,1}

|Pr[D(X) = 1]− Pr[D(Y) = 1]|

The intuition here is that if two distributions have tiny statistical distance then no test
D can distinguish them from each other. Therefore, they are “essentially identical”. This
gives us a way to relax the security requirements for encryption. Recall that perfect security
required that the distributions Enc(K,m0),Enc(K,m1) are indentical. We now relax this
by only insisting that they are “statistically close”.

Definition 1 An encryption scheme has ε-security if ∀m0,m1 ∈M :

SD(Enc(K,m0),Enc(K,m1)) ≤ ε

where K is a uniformly random key in the set K. ♦

Theorem 1 In any ε-secure encryption scheme we have that ε ≥ 1− |K|
|M|

Proof: let ε = maxm0,m1 SD(Enc(K,m0),Enc(K,m1))

≥ max
m0,m1

Pr[Dm0(Enc(K,m0)) = 1]− Pr[Dm0(Enc(K,m1)) = 1]

Lecture 4, Page 1

where Dm0 is a distinguisher which is defined as Dm0(c) = 1 if ∃k ∈ K such that Dec(k, c) =
m0.
Taking the expectation over random choices for m0,m1, we get that the above is

≥ Pr[DM0(Enc(K,M0)) = 1]− Pr[DM0(Enc(K,M1)) = 1] ≥ 1− |K|
|M|

where M0 and M1 are the uniform distributions overM. It’s easy to see that Pr[DM0(Enc(K,M0)) =

1]. Moreover Pr[DM0(Enc(K,M1)) = 1] ≤ |K|
|M| since for any ciphertext c in the support of

Enc(K,M1), there are at most |K| values of m0 for which Dm0(c) would output 1 and the
probability that the random variable M0 takes on some such value is therefore bounded by
|K|
|M| .

Thus we are still bound by Shannon’s impossibility result, saying that if the key is even 1-bit
shorter than the message, ε ≥ 1

2 . BUT, have not shown that the distinguisher is efficient.
Thus, even though we can’t get ε-security, maybe we can get somewhere if we restrict the
distinguisher to be efficient.

3 Computationally Secure Cryptography

The goal is to define encryption schemes that a computationally constrained adversary can-
not distinguish with some bounded probability (i.e. probability less than the chance of an
asteroid hitting the earth).

One idea is to define (t, ε)-security where for any adversary whose run time is bounded
by t, we would require that the success probability ≤ ε. We won’t use this definition be-
cause it gets quite cumbersome. The exact run-time depends on the particular model of
computation (Turing Machine vs. JAVA programs) and also it’s not clear what choices of
t, ε are the right ones.

3.1 Asymptotic Security

Instead we define asymptotic security as follows:

• All schemes are parameterized by a “security parameter” n. As n gets bigger the
scheme should asymptotically become more secure. For example, the scheme can set
the size of the secret key to depend on n.

• Adversaries are PPT (probabilistic polynomial time), i.e. run in time polynomial in
n and their other inputs. Adversaries have access to randomness (uniformly random
bits). For a PPT algorithm A we write A(x) to denote the random variable for A’s
output and A(x; r) is the execution of a randomized algorithm for a particular input
x and a particular randomness r.

• the adversary’s ”success probability” is negligible:

ε = negl(n) if ε(n) =
1

nω(1)
⇐⇒ ∀c > 0, ε(n) =

1

Ω(nc)
⇐⇒ ∀c > 0 ∃n0 s.t. ∀n > n0, ε(n) ≤ 1

nc

Lecture 4, Page 2

Examples of non-negligible functions include 1
2 ,

1
logn and 1

n2 . We are looking for a

negligible function like 1
2n .

Note that

ε(n) =

{
1
2 n is odd
1
2n n is even

is not negligible.

A useful property of negligible functions is that multiplying a polynomial function
times a negligible function results in a negligible function.

Asymptotic security gives a sharp threshold for security without messy parameters. Almost
all of the results we have can also be nicely translated to (t, ε)-security if desired.

We make a brief comment on uniform v.s. non-uniform models of computation: uniform
computation adversaries have one algorithm that gets n as an input while non-uniform
models of adversaries allow for different algorithms for each different n. For this class we
will usually think of the adversary as uniform but might mention some cases where this
distinction makes a difference.

4 Computational Indistinguishability

Consider the sequence of variables X = {Xn}n ∈ N and Y = {Yn}n ∈ N (one for each
security parameter). We define computational indistinguishability between the sequences
as follows:

Definition 2 X,Y are computationally indistinguishable if ∀PPT distinguishers D, ∃ε(n) =
negl(n) such that

|Pr[D(Xn) = 1]− Pr[D(Yn) = 1]| ≤ ε(n)

denoted by X ≈ Y . ♦

Theorem 2 If X ≈ Y and f : {0, 1}∗ → {0, 1}∗ is a PPT function, then f(X) ≈ f(Y).

Informal proof: If we can distinguish between f(X) and f(Y), then we could run f on X
and Y and distinguish the outputs and it use it to distinguish between X and Y .

Proof: (reduction) Suppose there exists a PPT distinguisher D such that

|Pr[D(f(Xn)) = 1]− Pr[D(f(Yn)) = 1]| 6= negl(n)

We can construction a new PPT distinguisher D′ = D ◦ f and get that

Pr[D′(Xn) = 1]− Pr[D′(Yn) = 1]| 6= negl(n)

since a polynomial function times a negligible function is still negligible.

Theorem 3 Hybrid Argument. If X ≈ Y and Y ≈ Z, then X ≈ Z.

Lecture 4, Page 3

Proof: For any distinguisher D let

ε(n) = |Pr[D(Xn) = 1]− Pr[D(Zn) = 1]|
= |Pr[D(Xn) = 1]− Pr[D(Yn) = 1] + Pr[D(Yn) = 1]− Pr[D(Zn) = 1]|
≤ |Pr[D(Xn) = 1]− Pr[D(Yn) = 1]|︸ ︷︷ ︸

ε1(n)

+ |Pr[D(Yn) = 1]− Pr[D(Zn) = 1]|︸ ︷︷ ︸
ε2(n)

Since X ≈ Y we know that ε1 is negligible and since Y ≈ Z we know that ε2 is negligible.
Therefore ε = ε1 + ε2 is negligible which concludes the proof.

5 Security Game

We usually define security via games which are interactive protocols between an adversary A
trying to break the system and the world running the system (which we call the challenger).
For some such Game and an adversary A we define GameA(1n) to denote output of the game;
usually this will be the output of the adversary A at the end of the game.

Often we define security via two games Game0,Game1 which represent two possible
options for what the world might be doing (e.g., encryptions of two different messages) and
we require that the adversary cannot tell them apart. We define this as follows. Definition

3 We say that two games Game0,Game1 are computationally indistinguishable, denoted by
Game0 ≈ Game1, if

∀PPTA ∃negl ε() s.t. |Pr[Game0A(1n) = 1]− Pr[Game1A(1n) = 1]| = ε(n)

♦
Computational indisitnguishability of games is analogous to computational indistin-

guishability of random variables. In particular, the same hybrid argument works for games.

Theorem 4 If Game0 ≈ Game1 and Game1 ≈ Game2 then Game0 ≈ Game2

5.1 Computationally Secure Encryption

We consider an encryption scheme with key space Kn = {0, 1}n and message space Mn =
{0, 1}`(n) where ` is some polynomial. The ciphertext space is Cn. The scheme consists of
algorithms:

Enc : Kn ×Mn → Cn
Dec : Kn × Cn →Mn

we define the following game for proving computational security of encryption schemes:
Definition 4 One-time security game: OneSecb where b ∈ {0, 1}

• Adversary chooses m0,m1 ∈Mn and sends it to the Challenger

• The Challenger samples a uniformly random key from the key space (k ← Kn), and
then sends the Adversary an encryption c = Enc(k,mb) of the message mb.

Lecture 4, Page 4

• The Adversary outputs some value b′.

♦

Definition 5 An encryption scheme is one-time computationally secure if

OneSec0 ≈ OneSec1.

♦

Lecture 4, Page 5

