
CS 7810 Graduate Cryptography November 29, 2017

Lecture 23: (Leveled) Fully Homomorphic Encryption

Lecturer: Daniel Wichs Scribe: Jack Doerner

1 Topics Covered

2. Definitions

3. Remembering Regev Encryption

4. The Short Integers Solution Problem

5. An Aside: CRHFs from LWE

6. The Gadget Matrix

7. The GSW Leveled FHE Scheme

8. The Security of GSW

2 Definitions

Definition 1 (Collision Resistant Hash Function).

A family of functions
H{0,1}n : {0, 1}`(n) 7→ {0, 1}n

with `(n) = poly(n) is a Collision Resistant Hash Function Family (CRHF Family) if and
only if

1. ∀k ∈ {0, 1}n, ∀x ∈ {0, 1}`(n), Hk(x) is computable in polnomial time.

2. It is not possible to efficiently find two inputs x and y such that the outputs of a
randomly selected member of the family on x and y are equal. That is, for all PPT
algorithms A

Pr
[
Hk(x) = Hk(y) : k ← Un, (x, y)← A (k)

]
≤ negl(n)

Definition 2 (Learning With Errors Assumption).

The Learning With Errors Assumption (LWE) is a cryptographic assumption over vectors
and learning algorithms. Given a PPT algorithm

(~s, n, q,m, χ)← LWEGen (1n)

Lecture 23, Page 1

which takes a security parameter 1n and produces a vector ~s ∈ Znq along with a distribution
χ and a sample count m in poly(n), the Learning With Errors Assumption comes in two
flavors, which imply one another:

1. The Decisional Learning With Errors Assumption (DLWE) asserts that if

(~s, n, q,m, χ)← LWEGen (1n) , A← Zn×mq , ~e← χm,~b← Zmq

then
(A,~sA+ ~e)

c≡
(
A,~b

)
In other words, m random linear combinations of the elements of ~s with errors ~e
cannot be efficiently distinguished m uniform samples (given by ~b), even when the
matrix A that generated the combinations is known.

2. The Search Learning With Errors Assumption (SLWE) asserts that for all PPT
algorithms A,

Pr


A(A,~sA+ ~e) = ~s :

(~s, n, q,m, χ)← LWEGen (1n) ,

A← Zn×mq , ~e← χm

 ≤ negl(n)

In other words, given m random linear combinations of the elements of ~s with er-
rors ~e and the matrix A used to generate the combinations, ~s cannot be efficiently
calculated.

Definition 3 (Public Key Encryption with IND-CPA Security).

A Public Key Encryption (PKE) is a tuple of PPT algorithms, (Gen,Enc,Dec) such that:

1. Given a security parameter n, the Gen algorithm outputs a public key/private key
pair: (pk, sk)← Gen(1n)

2. Given a public key pk and a message m in the message space M, the Enc algorithm
outputs an encryption c: c← Encpk(m)

3. Given a private key sk and an encryption c, the Dec algorithm deterministically
outputs a message: m′ ..= Decsk(c)

A Public Key Encryption Scheme with IND-CPA Security must conform to two properties:

1. (Correctness) With overwhelmingly high probability, all valid encryptions of a mes-
sage must decrypt to the same message. Formally, we require that over (pk, sk) ←
Gen(1n) and all messages m in the message space,

Pr

[
Decsk(Encpk(m)) = m :

m←M, (pk, sk)← Gen(1n)

]
≥ 1− negl(n)

Lecture 23, Page 2

2. (Indistinguishability under Chosen Plaintext Attacks (IND-CPA Security)) With
overwhelmingly high probability, all ciphertexts must be indistinguishable to poly-
nomial time adversaries that have access to the public key. Formally, for all PPT
adversaries A = (A1,A2) comprising two algorithms which pass the state s between
them, we insist that∣∣∣∣∣∣∣∣∣Pr


A2 (c, s) = b :

(pk, sk)← Gen(1n), (m0,m1, s)← A1 (pk) ,

b← U1, c← Encpk(mb)

− 1

2

∣∣∣∣∣∣∣∣∣ ≤ negl(n)

That is, the adversary receives the public key and, after performing a polynomial
number of encryptions of its choice, it produces two challenge messages. The game
encrypts one of these two messages at random and returns the ciphertext c to the
adversary, which may then perform a polynomial number of encryptions again before
guessing which of its messages was encrypted to produce c. The adversary must be
correct with negligible advantage, relative to guessing at random.

3 Remembering Regev Encryption

Recall first the Regev Encryption Scheme:

Algorithm 1. RegevGen(n,m, χ):

1. ~s← Znq

2. A← Zn×mq

3. ~e← χm

4. pk ..= (A,~b = ~sA+ ~e)

5. sk ..= ~s

6. output (pk, sk)

Algorithm 2. RegevEnc
pk=(A,~b)

(x ∈ {0, 1}):

1. ~r ← {0, 1}m

2. ~u ..= A~r

3. ~v ..=
〈
~b, ~r
〉

+ x
⌈ q

2

⌋
4. output ct = (~u,~v)

Lecture 23, Page 3

Algorithm 3. RegevDecsk=~s(ct = (~u,~v)):

1. output d~v − 〈~s, ~u〉c

Notice with respect to the encryption algorithm that if an adversary is given ~u, it
should be hard for that adversary to recover ~r, or in fact any smallish vector ~r′ s.t. A~r′ = ~u.

Otherwise, the adversary can use~b, which is part of the public key, to compute
〈
~b, ~r
〉

, which

can be subtracted from ~v to recover x. Thus the problem of breaking Regev encryption
can be reduced to the problem of finding such a vector. This is known as the Short Integer
Solution (SIS) problem.

4 The Short Integer Solutions Problem

The Short Integer Solution Problem is a simple problem over matrices and vectors which
must be hard to solve if LWE is hard. It directly models the security of Regev Encryption,
specified above. The problem is of the following form: suppose there exists some public
matrix A ← Zn×mq . Given a vector ~u ∈ Znq , the problem is to find a vector ~r′ ∈ Zmq such
that A~r = ~u and ‖~r‖∞ ≤ γ (for some smallish γ). Alternately, the problem can be stated
in the following way: find a vector ~r 6= ~0 such that A~r = ~0 and ‖~r‖∞ ≤ γ for γ � q/(2m).
This is conjectured to be computationally infeasible, and indeed, if it is not, it can be used
to break LWE.
Theorem 1. If the DLWE problem is hard, then the SIS problem must be as well.

Proof. Suppose this were not the case. Specifically, suppose DLWE is hard to solve, and
there were some adversary A who could recover ~r 6= ~0 given A ← Zn×mq such that A~r = ~0
and ‖~r‖∞ ≤ γ. Hardness of the DLWE problem implies that{(

A,~b = ~sA+ ~e
)

: A← Zn×mq , ~s← Znq , ~e← χm
}

c≡
{(

A,~b
)

: A← Zn×mq ,~b← Zmq
}

We could use ~r recovered by A to break this property by computing
〈
~b, ~r
〉

. If ~b = ~sA + ~e

then we have 〈
~b, ~r
〉

= 〈~sA+ ~e, ~r〉

=
〈
~sA~r + ~e~r,~1

〉
=
〈
~0 + ~e~r,~1

〉
≤ mβγ

where β is the bound on χ. On the other hand, if ~b ← Zmq , then
〈
~b, ~r
〉

is uniform over Zq
regardless of the value of ~r. Thus, if mβγ < q/2, which is true if both β and γ are sufficiently
small, then we can distinguish between the two distributions with non-negligible probability.
This contradicts our assumption that DLWE is hard to solve, and so if DLWE is hard to
solve, then SIS must also be.

Lecture 23, Page 4

5 An Aside: CRHFs from LWE

We define the Hash function HZn×m
q

: Zmγ 7→ Znq with m > n log q and m = poly(n) to be

calculated as

HA

(
~r ∈

[
γ

2
,−γ

2

]m)
= A~r

where A ← Zn×mq . Suppose that you could find a collision; specifically, ~r, ~r′ such that

~r 6= ~r′ ∧ A~r = A~r′. This implies that A(~r − ~r′) = ~0 and ‖~r − ~r′‖∞ ≤ γ, which implies that
you can break SIS and therefore LWE. Therefore, this must be a collision resistant hash
function if LWE is hard.

6 The Gadget Matrix

We have shown that solving SIS is hard in the average case, but in some specific cases it is
easy. The case in which we are interested is known as the Gadget Matrix:

G =


20 21 · · · 2blog qc 0 0 · · · 0 · · · 0 0 · · · 0 0 · · ·
0 0 · · · 0 20 21 · · · 2blog qc · · · 0 0 · · · 0 0 · · ·
...

... · · ·
...

...
... · · ·

...
. . .

...
... · · ·

...
... · · ·

0 0 · · · 0 0 0 · · · 0 · · · 20 21 · · · 2blog qc 0 · · ·


which is in Zn×n log q

q ‖0n×(m−n log q). Note that this matrix effectively reconstructs values
from vectors of bits. Consequently, solving the SIS problem relative to it is easy. Given
any ~u ∈ Znq , we can always easily find ~r ∈ {0, 1}m such that G~r = ~u simply by computing
~r ..= Bits(~u)‖0. We will make a slight abuse of notation to call the function that calculates
this value G−1(·), such that GG−1(~u) = ~u.

7 The GSW Leveled FHE Scheme

A Homomorphic Encryption (HE) Scheme is a variant of public-key encryption wherein
the ciphertexts have some sort of homomorphism. That is, given two ciphertexts, C1, C2,
there is some operator that can combine those ciphertexts without knowledge of the se-
cret key such that the combined ciphertext decrypts to a well-defined combination of the
original values. For example, there may exist some operation HomomorphicAdd such that
Decsk

(
HomomorphicAdd(C1, C2)

)
= x1 +x2, where x1 and x2 are the decryptions of C1 and

C2 individually. Note that homomorphic encryption schemes are malleable by definition,
and therefore they cannot have ciphertext indistinguishability under adaptive ciphertext
attacks (IND-CCA2). A Fully Homomorphic Encryption (FHE) Scheme is an encryption
scheme with homomorphisms sufficiently powerful to compute any function upon cipher-
texts. For boolean circuits, this typically means XOR and AND, and for arithmetic circuits,
it typically means addition and multiplication. A Leveled FHE scheme is an encryption
scheme for which any function can be computed over the ciphertexts, so long as that func-
tion can be computed by a circuit of a particular, predetermined depth. What follows is

Lecture 23, Page 5

the scheme of Gentry, Sahai, and Waters (GSW), which is somewhat similar to the Regev
encryption scheme. Since we will not show how to boostrap (i.e. reduce the error magnitude
of a ciphertext), the scheme is a Leveled FHE as described. We begin with key generation:

Algorithm 4. GSWGen(n,m, χ):

1.

((
A,~b

)
, ~s

)
← RegevGen(n,m− 1, χ)

2. pk = Ā ..=

[
A
~b

]

3. sk = ~t ..= −~s‖1

4. output (pk, sk)

Note that GSWGen is effectively identical to RegevGen, except that the output is in a
slightly different format such that ~tĀ = −~sA+~b = ~e. Next, we specify encryption:

Algorithm 5. GSWEncpk=(Ā)(x ∈ {0, 1}):

1. R← {0, 1}m×m

2. C ..= ĀR+ x ·G

3. output C

In the above, G is the gadget matrix. Notice that

~tC = ~tĀR+ x · ~tG
= ~eR+ x · ~tG
= x · ~tG+ ~e∗

where ‖~e∗‖∞ ≤ mβ, and β is the bound on χ. We say that C is a γ-noisy encryption of x
if and only if ~tC = x · ~tG+ ~e∗ s.t. ‖~e∗‖∞ ≤ γ

Algorithm 6. GSWDecsk=~t(C):

1. output ~tC ·G−1
(
~0‖
⌊ q

2

⌋)

Lecture 23, Page 6

Note that

~tC ·G−1

(
~0‖
⌊
q

2

⌋)

=
(
x~tG+ ~e∗

)
·G−1

(
~0‖
⌊
q

2

⌋)

=x

〈
~t,~0‖

⌊
q

2

⌋〉
+ ~e∗G−1

(
~0‖
⌊
q

2

⌋)

=x

⌊
q

2

⌋
+ ê s.t. |ê| ≤ mγ

Consequently, if mγ ≤
⌊ q

4

⌋
, then a decryptor can distinguish x = 1 from x = 0 with

probability 1. Now we show the first of our homomorphic operations, addition, which is
simple enough:

Algorithm 7. GSWAdd(C1, C2):

1. output C1 + C2

If C1 and C2 are γ-noisy encryptions of two bits x1, x2, then the output C1+2 is a
2γ-noisy encryption of x1 + x2. This works because

~tC1+2 = ~t(C1 + C2)

= (x1 + x2) · ~tG+ (~e1 + ~e2)

Finally, we will show how to multiply. First, we must abuse our notation a bit more
by defining G−1 over matrices (whereas untill now it has only been defined for vectors).
Specifically, we define G−1 : Zn×mq 7→ {0, 1}m×m to yield

G−1(C) = G−1(C1)‖G−1(C2)‖ · · · ‖G−1(Cm)

where Ci is the ith column of C expressed as a vector.

Algorithm 8. GSWMul(C1, C2):

1. output C1G
−1(C2)

If C1 and C2 are γ-noisy encryptions of two bits x1, x2, then the output C1·2 is a

Lecture 23, Page 7

((m+ 1) γ)-noisy encryption of x1 · x2. This works because

~tC1·2 = ~tC1G
−1(C2)

= (x1 · ~tG+ e1)G−1(C2)

= x1 · ~tC2 + e′ s.t. e′ = e1G
−1(C2)

= x1

(
x2~tG+ e2

)
+ e′

= x1 · x2 · ~tG+ x1 · e2 + e′

= x1 · x2 · ~tG+ e∗ s.t. e∗ = x1 · e2 + e′

where ‖e∗‖∞ = (m + 1)γ. Note that because the noise term e∗ = x1 · e2 + e1G
−1(C2) is

dependent upon the two inputs in slightly different ways, the multiplication operation isn’t
precisely commutative. If the inputs are swapped, the output will decrypt to the same
value, but the noise term may be (significantly) different. Finally, there is an easy trick to
compute NAND of two bits in a single step, which is useful because NAND is complete for
all computations:

Algorithm 9. GSWNand(C1, C2):

1. output G− GSWMul(C1, C2)

Bear in mind that the three homomorphic operations we have described (addition/XOR,
multiplication/AND, NAND) all return ciphertexts with higher noise than their input ci-
phertexts. As we have given no way to reduce the noise of a ciphertext, this means that the
scheme is leveled, i.e. that it can compute funcitons only of a finite, pre-determined depth.
Since NAND is complete for computation, this will be easiest to reason about in the con-
text of NAND-logic. Remember that the decryption algorithm is perfectly correct only for
γ-noisy ciphertexts such that mγ ≤

⌊ q
4

⌋
. For a fresh encryption, γ ≤ mβ, and for a NAND

gate with two γ-noisy inputs, the output ciphertext is ((m+ 1) γ)-noisy. Consequently, the
noise level of an entire NAND-circuit is given by γ ≤ (m+ 1)dmβ, where d is the depth of
the circuit, and to fulfill the conditions for decryption, we need

(m+ 1)dm2β ≤
⌊
q

4

⌋
which yields circuits of a maximum depth d such that

d ≤
log

(
b q4c
m2β

)
log(m+ 1)

8 The Security of GSW

The security of the GSW scheme can be shown via the hardness of DLWE and the Left-
over Hash Lemma, and follows an argument quite similar to that of the security of Regev

Lecture 23, Page 8

Encryption. In short, we wish to show that{(
Ā, ĀR

)
: (Ā, sk)← GSWGen(n,m, χ), R← {0, 1}m×m

}
c≡
{

(U1, U2) : U1 ← Zn×mq , U2 ← Zn×mq

}
If this is true, then it follows directly that{(

Ā, ĀR+ x ·G
)

: (Ā, sk)← GSWGen(n,m, χ), R← {0, 1}m×m , x ∈ {0, 1}
}

c≡
{

(U1, U2) : U1 ← Zn×mq , U2 ← Zn×mq

}
Note that Ā is exactly the form of the public key in the GSW scheme, and ĀR + x · G is
exactly the form of an encryption of the bit x. This being the case, if the first condition
is true, then we will have proven indistinguishability of ciphertexts under chosen plaintext
attack, as specified in Definition 3. Thus, our security theorem:
Theorem 2. {(

Ā, ĀR
)

: (Ā, sk)← GSWGen(n,m, χ), R← {0, 1}m×m
}

c≡
{

(U1, U2) : U1 ← Zn×mq , U2 ← Zn×mq

}
Proof. The proof will proceed via a series of hybrids:

H0 The left hand side of the theorem statement. That is,{(
Ā, ĀR

)
: (Ā, sk)← GSWGen(n,m, χ), R← {0, 1}m×m

}
H1 Ā is replaced by U1 ← Zn×mq , yielding the tuple{

(U1, U1R) : U1 ← Zn×mq , R← {0, 1}m×m
}

Note that Ā comprises the A and ~b components of the public key for Regev encryption,

where A ← Zn×(m−1)
q and ~b ..= ~sA + ~e. Thus H1

c≡ H0 by the assumed hardness of the
Decisional LWE problem.

H2 U1R is replaced by U2 ← Zn×mq , yielding the right hand side of the theorem statement:{
(U1, U2) : U1 ← Zn×mq , U2 ← Zn×mq

}
If we consider U1R as a hash function:

HZn×m
q

: {0, 1}m×m 7→ Zn×mq s.t. HU1(R) = U1R

we can see that it is a compressing hash function if m > n log q, and more importantly that
it is a universal hash function:

Pr
Uq ,R

[
HU1(R) = HU1(R′)|R 6= R′

]
=

1

qnm

Lecture 23, Page 9

Thus by applying the Leftover Hash Lemma, we find that{
HU1(R) : U1 ← Zn×mq , R← Zm×mq

}
s≡
{
U2 ← Zn×mq

}
and consequently H1

s≡ H2, which implies H0
c≡ H2

Lecture 23, Page 10

