CS 7880 Graduate Cryptography October 25th, 2017

Lecture 14: Public Key Encryption
Lecturer: Daniel Wichs Scribe: Schuyler Rosefield

1 Topic Covered

e Discrete Log Assumptions

e Public Key Encryption from Discrete Log Assumptions

DEFINITION 1 Discrete Log Assumption (DL)
Pr{A(¢g”) = x : x < Zg| = negl(n)

DEFINITION 2 Computational Diffie-Hellman (CDH)
Pr[A(g®,¢¥) = g™V : x,y < Zg4] = negl(n)
DEFINITION 3 Decisional Diffie-Hellman (DDH)
(9%, 9%, 9™) =~ (9%, 9%, 9%) |2, y, 2  Zq
DEFINITION 4 Diffie-Hellman Key Exchange
Decide and share public parameters g, ¢, G, then the protocol is as follows

/A E B

T 4 Ly

Y < Zyg
l

I
Q: g k= gt

If DDH isn’t assumed, so ¢®™¥ can be distinguished from random, but is still hard to
compute.

In the RO model, each party could instead take K = RO(g*¥). In the standard model,
instead the protocol can be run n times for an n bit key, and in each iteration take hc(g™)
which is a uniform random bit.

DEFINITION 5 Public Key Encryption
Three functions

(pk, sk) < Gen(1")
¢ < Enc(pk,m)
m < Dec(sk,c)

Correctness: Vm, Pr[Dec(sk, Enc(pk,m)) = m|(pk, sk) < Gen(1")] =1
Security: Denote game PKCPASec’ as follows:
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¢ < Enc(pk, mp)

|
\Y /

We have security if PKCPASec® =~ PKCPASec!

DEFINITION 6 ElGamal Encryption Scheme

(pk, sk) < Gen(1") = ¢°, x; x + Z,
¢ < Enc(pk,m) = (¢, pkY - m);y < Zg
m < Dec(sk,c) = ha/h5¥; (b1, h2) < ¢

Proof:
Correctness: This from the definition exactly
Security Using the DDH assumption.
Define hybrids

Hi:c=(¢Y,9° -mo)|z < Zq
H2 C= (hl,h2)|h1,h2 ~— G
Hs:c=(¢Y,9° -m)|z  Zg

then PKCPASec® ~ Hy ~ Hy ~ H3 ~ PKCPASec! ]

DerFiNITION 7 CRHF from DL

Modify the definition of CRHF to specify the seed as s < Gen(1™). The CRHF is this
the combination of Gen, Hy

VPPTA, Pr[Hs(z) = Hs(2'),x # 2’ : s < Gen(1"), (z,2") < A(s)] = negl(n)

We define the construction as follows:

Assume that ¢ is prime, and so G is a prime-ordered group.

s=(g,h) =G?

H,: 72 — G, Hy(x1,12) = g h*

Theorem 1 The above is a CRHF under DL.

Proof Sketch: The attacker A generates (z1,x2) # (o), 2h) s.t. g“'h*> = g"1h*2 with
non-negligible probability.

This is equivalent to saying h*2 s = g

As G is a field, then we can find inverses so then we can find h = ¢#1—%1)/(x2=25)
mod q. Since (x1,x2) # (2}, 2h) = xo # ab,.

This is equivalent to saying finding the discrete log of h = g~. L]

x1—x)
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DEerINITION 8 PRG from DDH
Similarly to our change in the CRHF, we also slightly change the definition of the PRG.
.72 _
G:Z: — G, G(x,y) = (9",9Y,9")
This follows immediately from DDH.

Note 1 As a generalization of the above, we can take
G:Zi — G Gz, om) = (97, 9%, 9™, 9%, g™, .. )

Proof Sketch: Define hybrids Hy = G, H; = (g%, uniform, g%+, g®¥i+1 .. ), H; = (uniform)
Wish to find that H; =~ H;y1, breaking this would be equivalent to breaking DDH. L]

DEFINITION 9 Naor-Reingold PRF
l iiwi—1Yi
Fk:(yo,...yl)(x € {07 1} ) = gyonl’h_ly
We can think about this as evaluating a path on the tree

Proof Sketch: First, consider this tree as a PRG. Instead of outputting a single leaf,
output all 2" elements on level | in the tree. If we take hybrids where we replace level I with
uniform values, then the elements on level | + 1 are equivalent to the results in the above

PRG.
To prove as a PRF, the a similar argument to the GGM construction can be made. [

DEFINITION 10 Distributed decryption for ElGamal
We can use additive secret sharing to distribute x1,...x, S.t. El x; = x to n computers.
Then to recover the message from an encryption, each computer can generate g¥*t, and
taking [, g¥"" = g*¥ allows us to get th emessage.
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