Lecture 14: Public Key Encryption

Lecturer: Daniel Wichs
Scribe: Schuyler Rosefield

1 Topic Covered

- Discrete Log Assumptions
- Public Key Encryption from Discrete Log Assumptions

Definition 1 Discrete Log Assumption (DL)

$$
\operatorname{Pr}\left[A\left(g^{x}\right)=x: x \leftarrow \mathbb{Z}_{q}\right]=\operatorname{negl}(n)
$$

Definition 2 Computational Diffie-Hellman (CDH)
$\operatorname{Pr}\left[A\left(g^{x}, g^{y}\right)=g^{x y}: x, y \leftarrow \mathbb{Z}_{q}\right]=\operatorname{negl}(n)$
Definition 3 Decisional Diffie-Hellman (DDH)
$\left(g^{x}, g^{y}, g^{x y}\right) \approx\left(g^{x}, g^{y}, g^{z}\right) \mid x, y, z \leftarrow \mathbb{Z}_{q}$
Definition 4 Diffie-Hellman Key Exchange
Decide and share public parameters g, q, \mathbb{G}, then the protocol is as follows

If DDH isn't assumed, so $g^{x y}$ can be distinguished from random, but is still hard to compute.

In the RO model, each party could instead take $K=R O\left(g^{x y}\right)$. In the standard model, instead the protocol can be run n times for an n bit key, and in each iteration take $h c\left(g^{x y}\right)$ which is a uniform random bit.
Definition 5 Public Key Encryption
Three functions

$$
\begin{aligned}
(p k, s k) & \leftarrow \operatorname{Gen}\left(1^{n}\right) \\
c & \leftarrow \operatorname{Enc}(p k, m) \\
m & \leftarrow \operatorname{Dec}(s k, c)
\end{aligned}
$$

Correctness: $\forall m, \operatorname{Pr}\left[\operatorname{Dec}(s k, \operatorname{Enc}(p k, m))=m \mid(p k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right)\right]=1$
Security: Denote game PKCPASec ${ }^{b}$ as follows:

$$
\begin{aligned}
(p k, s k) & \leftarrow \operatorname{Gen}\left(1^{n}\right)=g^{x}, x ; x \leftarrow \mathbb{Z}_{q} \\
c & \leftarrow \operatorname{Enc}(p k, m)=\left(g^{y}, p k^{y} \cdot m\right) ; y \leftarrow \mathbb{Z}_{q} \\
m & \leftarrow \operatorname{Dec}(s k, c)=h_{2} / h_{1}^{s k} ;(h 1, h 2) \leftarrow c
\end{aligned}
$$

Proof:

Correctness: This from the definition exactly
Security Using the DDH assumption.
Define hybrids

$$
\begin{aligned}
& H_{1}: c \equiv\left(g^{y}, g^{z} \cdot m_{0}\right) \mid z \leftarrow \mathbb{Z}_{q} \\
& H_{2}: c \equiv\left(h_{1}, h_{2}\right) \mid h_{1}, h_{2} \leftarrow G \\
& H_{3}: c \equiv\left(g^{y}, g^{z} \cdot m_{1}\right) \mid z \leftarrow \mathbb{Z}_{q}
\end{aligned}
$$

then PKCPASec ${ }^{0} \approx H_{1} \approx H_{2} \approx H_{3} \approx P_{K C P A S e c}{ }^{1}$
Definition 7 CRHF from DL
Modify the definition of CRHF to specify the seed as $s \leftarrow \operatorname{Gen}\left(1^{n}\right)$. The CRHF is this the combination of Gen, H_{s}
$\forall P P T A, \operatorname{Pr}\left[H_{s}(x)=H_{s}\left(x^{\prime}\right), x \neq x^{\prime}: s \leftarrow G e n\left(1^{n}\right),\left(x, x^{\prime}\right) \leftarrow A(s)\right]=\operatorname{negl}(n)$
We define the construction as follows:
Assume that q is prime, and so G is a prime-ordered group.
$s=(g, h)=G^{2}$
$H_{s}: \mathbb{Z}_{q}^{2} \rightarrow G, H_{s}\left(x_{1}, x_{2}\right)=g^{x_{1}} h^{x_{2}}$
Theorem 1 The above is a CRHF under DL.
Proof Sketch: The attacker A generates $\left(x_{1}, x_{2}\right) \neq\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ s.t. $g^{x_{1}} h^{x_{2}}=g^{x_{1}^{\prime}} h^{x_{2}^{\prime}}$ with non-negligible probability.

This is equivalent to saying $h^{x_{2}-x_{2}^{\prime}}=g^{x_{1}-x_{2}^{\prime}}$
As G is a field, then we can find inverses so then we can find $h=g^{\left(x_{1}-x_{1}^{\prime}\right) /\left(x_{2}-x_{2}^{\prime}\right)}$ $\bmod q$. Since $\left(x_{1}, x_{2}\right) \neq\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \Rightarrow x_{2} \neq x_{2}^{\prime}$.

This is equivalent to saying finding the discrete \log of $h=g^{z}$.

Lecture 14, Page 2

Definition 8 PRG from $D D H$
Similarly to our change in the CRHF, we also slightly change the definition of the PRG. $G: \mathbb{Z}_{q}^{2} \rightarrow G^{3}, G(x, y)=\left(g^{x}, g^{y}, g^{x y}\right)$
This follows immediately from DDH.
Note 1 As a generalization of the above, we can take
$G: \mathbb{Z}_{q}^{l+1} \rightarrow G^{2 l+1}, G\left(x, y_{1}, \ldots y_{l}\right)=\left(g^{x}, g^{y_{1}}, g^{x y_{1}}, g^{y_{2}}, g^{x y_{2}}, \ldots\right)$
Proof Sketch: Define hybrids $H_{0}=G, H_{i}=\left(g^{x}\right.$, uniform, $\left.g^{y_{i+1}}, g^{x y_{i+1}}, \ldots\right), H_{l}=($ uniform $)$ Wish to find that $H_{i} \approx H_{i+1}$, breaking this would be equivalent to breaking $D D H$.

Definition 9 Naor-Reingold PRF
$F_{k=\left(y_{0}, \ldots y_{l}\right)}\left(x \in\{0,1\}^{l}\right)=g^{y_{0} \prod_{i ; x_{i}=1} y_{i}}$
We can think about this as evaluating a path on the tree

Proof Sketch: First, consider this tree as a PRG. Instead of outputting a single leaf, output all 2^{l} elements on level l in the tree. If we take hybrids where we replace level l with uniform values, then the elements on level $l+1$ are equivalent to the results in the above PRG.

To prove as a PRF, the a similar argument to the GGM construction can be made.

Definition 10 Distributed decryption for ElGamal

We can use additive secret sharing to distribute $x_{1}, \ldots x_{n}$ s.t. $\sum_{i} x_{i}=x$ to n computers.
Then to recover the message from an encryption, each computer can generate $g^{y x_{i}}$, and taking $\prod_{i} g^{y x_{i}}=g^{x y}$ allows us to get th emessage.

