Lecture 12: Field Arithmetic

Lecturer: Daniel Wichs
Scribe: Yashvanth Kondi

1 Topics Covered

- Fundamentals of field arithmetic
- Introduction to modular arithmetic
- Group theory

2 Fundamentals of Field Arithmetic

Given two integers a, b the cost of performing standard operations is as follows:

- $a+b, a \times b, \frac{a}{b}, a \mid b$: poly in input size.
- a^{b} : result of computation is exponential in input size, so trivially there exists no algorithm to perform exponentiation in poly time.
- $\operatorname{gcd}(a, b)$:

1. if $a=b$, output b
2. else 'divide' b by a to obtain k, r such that $a=k \cdot b+r$ where $r<b$, and output $\operatorname{gcd}(b, r)$.

Euclid's algorithm (above) computes the greatest common divisor of a and b. As $\frac{b+r}{2 b+r} \leq \frac{2}{3}$, there are at most $\log _{\frac{3}{2}}(a+b)$ iterations, keeping the overall running time polynomial in the inputs.

- $\operatorname{egcd}(a, b)=(x, y)$ such that $a \cdot x+b \cdot y=\operatorname{gcd}(a, b)$: can be computed in poly time by extending Euclid's algorithm, as described below.
$\operatorname{egcd}(a, b)$:

1. if $a=b$, output $(1,0)$
2. else 'divide' b by a to obtain k, r such that $a=k \cdot b+r$ where $r<b$, and compute $\left(x^{\prime}, y^{\prime}\right)=\operatorname{egcd}(b, r)$.
3. Output ($y^{\prime}, x^{\prime}-y^{\prime} \cdot k$).

3 Modular Arithmetic

The set of integers modulo N is denoted \mathbb{Z}_{N}. Given $a, b \in \mathbb{Z}_{N}$, computing $(a+b)(\bmod N)$ and $(a \cdot b)(\bmod N)$ is straightforward to do in poly time.

Given $a \in \mathbb{Z}_{N}$, the 'inverse' of a is denoted a^{-1}, and by definition $a \cdot a^{-1}=1(\bmod N)$.
Theorem 1 An $a \in \mathbb{Z}_{N}$ has an inverse if and only if $\operatorname{gcd}(a, N)=1$.
Proof: For a given $a \in \mathbb{Z}_{N}$, denote its inverse x. By definition, $a \cdot x=1(\bmod N)$. This implies that $\exists y$ such that $a \cdot x=1+N \cdot y$. This gives proves the existence of integers (x, y) such that $a \cdot x-N \cdot y=1$, which implies that $\operatorname{gcd}(a, N)=1$.

Exponentiation. Given $a, b \in \mathbb{Z}_{N}$, computing $a^{b}(\bmod N)$ can be done in poly time via the 'repeated square' algorithm. Let the number of bits to represent an element in \mathbb{Z}_{N} be $n=\log _{2} N$. The technique is to parse b into bits $b_{0} b_{1} \cdots b_{n}$, and then make use of the observation that $b=\sum_{i \in[n]} 2^{i} \cdot b_{i}$ to simplify the computation as follows:

$$
\left.a^{b}=a^{\left(\sum_{i \in[n]} 2^{i} \cdot b_{i}\right.}\right)=\prod_{i \in[n]} a^{2^{i} \cdot b_{i}}
$$

The algorithm itself follows easily, as described below.
$\exp _{N}(a, b):$

1. Parse b into bits $b_{0} b_{1} \cdots b_{n}$.
2. Set $c=1$, and $d=a$.
3. If $b_{0}=1$, update $c=a$
4. For $i \in[2, n]:$ Update $d=d^{2}$. If $b_{i}=1$, then update $c=c \cdot d(\bmod N)$
5. Output c.

4 Groups

A group $(\mathbb{G}, *)$ characterized by a set of elements \mathbb{G} and an operator $*$, satisfies the following properties:

1. Closure: $\forall a, b \in \mathbb{G}$, we have that $a * b \in \mathbb{G}$.
2. Associativity: $\forall a, b, c \in \mathbb{G}$, we have that $(a * b) * c=a *(b * c)$.
3. Identity: $\exists e \in \mathbb{G}$ such that $\forall a \in \mathbb{G}, a * e=e * a=a$.
4. Inverse: $\forall a \in \mathbb{G}, \exists a^{-1} \in \mathbb{G}$ such that $a * a^{-1}=a^{-1} * a=e$.

It's easy to see that $\left(\mathbb{Z}_{N},+\right)$ is a group with identity element $e=0$. However $\left(\mathbb{Z}_{N}, \times\right)$ is not a group (as 0 does not have an inverse for any N), and may not be a group for every N even if zero is omitted. This is because inverses exist only for $a \in \mathbb{Z}_{N}$ where $\operatorname{gcd}(a, N)=1$. We instead work with group $\left(\mathbb{Z}_{N}^{*}, \times\right)$, where $\mathbb{Z}_{N}^{*}=\left\{a: a \in \mathbb{Z}_{N}, \operatorname{gcd}(a, N)=1\right\}$.

Group order. The order $\varphi(N)$ of N is given by the size of the group \mathbb{Z}_{N}^{*}, ie. $\varphi(N)=\left|\mathbb{Z}_{N}^{*}\right|$. It is easy to see that for a prime $p, \varphi(p)=p-1$.

Subgroups. If $\mathbb{H} \subseteq \mathbb{G}$, we call $H=(\mathbb{H}, *)$ a subgroup of $G=(\mathbb{G}, *)$ if $(\mathbb{H}, *)$ is also a group. This is denoted $H \subseteq G$.

Theorem 2 Lagrange's Theorem. Let $H=(\mathbb{H}, *)$ and $G=(\mathbb{G}, *)$ be groups. If $H \subseteq G$, then $|\mathbb{H}|$ divides $|\mathbb{G}|$.

Proof: Let $\mathbb{H}=\left\{h_{1}, h_{2} \cdots h_{|\mathbb{H}|}\right\}$. Pick $g_{1} \in \mathbb{G}, g_{1} \notin \mathbb{H}$ and enumerate $g_{1} \mathbb{H}=\left\{g_{1}\right.$. $\left.h_{1}, g_{1} \cdot h_{2} \cdots g_{1} \cdot h_{|\mathbb{H}|}\right\}$. Continue to pick $g_{i} \in \mathbb{G}, g_{i} \notin \mathbb{H} \cup\left\{g_{1}, g_{2} \cdots g_{i-1}\right\}$ and generate $g_{i} \mathbb{H}=\left\{g_{i} \cdot h_{1}, g_{i} \cdot h_{2} \cdots g_{i} \cdot h_{|\mathbb{H}|}\right\}$. Note that $g_{i} \mathbb{H}$ and $g_{j} \mathbb{H}$ are completely disjoint sets when $i \neq j$. This can be shown as follows: consider g such that $g \in g_{i} \mathbb{H}$ and $g \in g_{j} \mathbb{H}$. Therefore $g_{i} \cdot h_{i^{\prime}}=g_{j} \cdot h_{j^{\prime}}=g$ for some $i^{\prime}, j^{\prime} \in[|\mathbb{H}|]$. This gives us $g_{i}=g_{j} \cdot h_{j^{\prime}} \cdot h_{i^{\prime}}^{-1}$. Now, any element in $g_{i} \mathbb{H}$ can be interpreted as $g_{i} \cdot h_{k}=g_{j} \cdot h_{j^{\prime}} \cdot h_{i^{\prime}}^{-1} \cdot h_{k}=g_{j} \cdot h_{k^{\prime}}$ for some k^{\prime}. This proves that if $g_{i} \mathbb{H}$ and $g_{j} \mathbb{H}$ have even one common element, then $i=j$. As all the $g_{i} \mathbb{H}$ sets are therefore disjoint, once we exhaust all possible $g_{i} \in \mathbb{G}$ we will have that $\sum_{i \in[n]}\left|g_{i} \mathbb{H}\right|=|\mathbb{G}|$ for some integer n.

Corollary 1 If p is prime, then $\forall a \in \mathbb{Z}_{p}^{*}, a^{p-1}=1(\bmod p)$.
Cyclic Groups. Let $G=(\mathbb{G}, *)$. Consider $g \in \mathbb{G}$. Denote $\langle g\rangle=\left\{g^{0}, g^{1}, \cdots g^{q-1}\right\}$ as the subgroup 'generated' by g. We say that G is cyclic if $\langle g\rangle$ is cyclic, ie. $g^{q}=g^{0}=1$. Note that $g^{i} \cdot g^{j}=g^{i+j(\bmod q)}$. The size q of $\langle g\rangle$ is the order of the group.

Proof: (Postponed proof of Fermat's Little Theorem, see Corollary 1). $|\langle a\rangle|=q \mid(p-1)$, so $a^{p-1}=a^{q \cdot k}=1(\bmod p)$

Also observe that $a^{b}(\bmod N)=a^{b(\bmod \varphi N)}(\bmod N)$, so $a^{b}=a^{\varphi N \cdot k+b(\bmod \varphi N)}$. Note that $\langle g\rangle$ is isomorphic to \mathbb{Z}_{q}, ie. $(\langle g\rangle, \cdot) \cong\left(\mathbb{Z}_{q},+\right)$.

Theorem 3 Ifp is prime, then $\left(\mathbb{Z}_{p}^{*}, \times\right)$ is a cyclic group. ie. $\exists g$ such that $\mathbb{Z}_{p}^{*}=\left\{1, g, g^{2}, \cdots g^{p-1}\right\}$.

