
CS 7810 Graduate Cryptography October 17, 2017

Lecture 10: Weak One-Way Functions and Hardness Amplification

Lecturer: Daniel Wichs Scribe: Ariel Hamlin

1 Topic Covered

• Weak OWF

• Hardness Amplification

• Universal OWFs

• Hash Functions

2 Weak One-Way Functions

We have previously explored the notion of one-way functions (OWF) and how they relate
to other symmetric key primitives. Here we introduce an even weaker notion of OWFs and
how they related to OWFs. A brief note on terminology, we refer to the OWF introduced
last week as strong OWF as opposed to weak OWF.

Definition 1 [Weak One-Way Functions]
We say a function f is a weak one-way function if the following holds:

• f is computable in time poly(n)

• For all PPT adversaries A, the exists a polynomial q(·) such that for any n ∈ Z

Pr[f(x) = f(x′) : x← {0, 1}n, y = f(x), x′ ← A(y)] ≤ 1− 1

q(n)

♦
The main difference between strong OWF and weak OWF depends on the advantage

of A, in weak OWF, the adversary only needs to fail to invert f with some non-negligible
probability as opposed to strong where it must be a negligible advantage.

As an example, consider a function f defined as f(a, b) = a ·b where a, b > 1 are random
n-bits numbers (if a = 1 or b = 1 this is trivially invertible) . Note that if a or b is even then
it is easy to compute a pre-image (2, a · b/2) of a · b. Since the probability of this occurring
is 3/4, it is clear that f is not a strong OWF. But it may nevertheless meet our definition
for weak OWFs. If a and b are large primes then f is non-trivial to factor (this is the hard
problem that many encryption schemes that are used in practice employ). Fortunately,
others have shown that primes are actually fairly common. If a and b are chosen at random
there is a 1

poly(n) chance that they will both be prime. Thus this is a good candidate for a
weak OWF.

Lecture 10, Page 1

3 Hardness Amplification

Given a weak OWF f it is possible construct a strong OWF? Consider the following con-
struction:

f ′(x1, · · · , xm) = f(x1)||f(x2)|| · · · ||f(xm)

where f has input size n and f ′ has an input size of n′ = n · m. We think of m as
a parameter. Intuitively, to invert f ′, one has to invert m independent instances of f .
Since inverting one instance of f is mildly hard, if we set m large enough than inverting
all m instances should be truly hard. For example, assume we knew that no polynomial
time attacker can invert a single instance of f with probability better than 1/2. Then it
seems “obvious” that when m = n then no polynomial time attacker could invert f ′ with
probability better than 1/2n. Unfortunately, such intuition is often deceptive. The reason
is that, even though the instances are chosen independently, the adversary sees all of them
and does not have to invert them independently of each other. Still, we will be able to
show via a non-trivial proof that when m is chosen large enough then hardness does indeed
amplify (although we cannot show that is amplifies all the way to 1/2n as our intuition
seemed to indicate – and there are actual counterexamples to this!). We note that there
are other examples in cryptography (e.g., interactive arguments) where similar attempts at
hardness amplification completely fail and breaking m independent instances is not much
harder than breaking one way instance. So although our intuition turns out to be correct
in the case of one-way functions, things are much more subtle than one may have initially
thought!

Theorem 1 If f is a weak OWF then there exits a polynomial m such that f ′ is a strong
OWF. In particular this holds for m = 2nq(n).

Proof: Assume otherwise, that f ′ is not a OWF, thus there exists a PPT A′ and polynomial
p′ for infinitely many n such that

Pr

[
f(x′1) = y1, · · · , f(x′m) = ym :

∀i ∈ [m] : xi ← {0, 1}n, yi = f(xi),
(x′1, · · · , x′m)← A′(y1, · · · , ym)

]
≥ 1

p′(n′)
≥ 1

p(n)
(1)

for some polynomial p(n) = p′(n′) = p′(nm) = p(2n2q(n)).
Define the following adversary that places the output of f in the i-th location, and

generates values for the rest of the inputs into A′.
Ai(y):

Set yi = y.

For all j ∈ [m] \ {i}, choose xj ← {0, 1}n and set yj = f(xj).

Let (x′1, · · · , x′m) = A′(y1, · · · , ym).

If f(x′i) = yi, output x′i else output ⊥.

Lecture 10, Page 2

Define the following adversary which uses Ai as a subroutine.

A(y):

For each i ∈ [m], run Ai(y) for ` = 2mn·p(n) iterations with independent randomness.
Output the first value that’s not ⊥.

We now analyze the success probability of A in inverting f . Define the set

Gi =

{
x : Pr[Ai(f(x)) 6= ⊥] ≥ 1

2mp(n)

}
where the probability is over the randomness of Ai. We will now use two claims to complete
the proof; the first claim says that for some i ∈ [m], the set Gi contains a large fraction of
all x’s. The second claim then says that for this i, the probability of ` iterations of Ai(f(x))
all outputting ⊥ is very small.

Claim 1 There exists some i ∈ [m] such that Prx←{0,1}n [x ∈ Gi] ≥
(

1− 1
2q(n)

)
.

Proof: Assume otherwise that for all i we have Prx←{0,1}n [x ∈ Gi] <
(

1− 1
2q(n)

)
.

Define S′ as the event that A′ successfully inverts f ′ as defined by the experiment in
equation (1).

Then

Pr[S′] = Pr[S′ ∧ (∀i ∈ [m] : xi ∈ Gi)] + Pr[S′ ∧ (∃i ∈ [m] : xi /∈ Gi)]

We can bound:

Pr[S′ ∧ (∀i ∈ [m] : xi ∈ Gi)] ≤
∏
i∈[m]

Pr[xi ∈ Gi]

<

(
1− 1

2q(n)

)m=2nq(n)

< e−n

We can also bound:

Pr[S′ ∧ (∃i ∈ [m] : xi /∈ Gi)] ≤
∑
i∈[m]

Pr[S ∧ xi /∈ Gi]

≤
∑
i∈[m]

Pr[S|xi /∈ Gi]

<
m

2mp(n)
<

1

2p(n)

where the second line follows by the definition of the set Gi; the probability that A′ succeeds
to invert f(x1), . . . , f(xm) if we condition on xi 6∈ Gi is at most 1

2mp(n) .
Combining these we get

Pr[S′] < e−n +
1

2p(n)
<

1

p(n)
.

This is a contradiction, thus Claim 1 holds.

Lecture 10, Page 3

Claim 2 Pr[A(f(x)) 6= ⊥ : x← {0, 1}n] > 1− 1
q(n)

Proof: Let S be the event that A(f(x)) 6= ⊥ and let i be the value from Claim 1.

Pr[¬S] ≤ Pr[¬S ∧ x ∈ Gi] + Pr[¬S ∧ x /∈ Gi]

≤ Pr[¬S ∧ x ∈ Gi] + Pr[x /∈ Gi]

≤ Pr[¬S ∧ x ∈ Gi] +
1

2q(n)

≤
(

1− 1

2mp(n)

)`=2mn·p(n)
+

1

2q(n)

≤ e−n +
1

2q(n)
<

1

q(n)
.

The fourth line follows since, when x ∈ Gi then the probability of each of the ` iterations

of Ai(f(x)) outputting ⊥ is at most
(

1− 1
2mp(n)

)
and the iterations are independent.

By the above claim, A succeeds to invert f(x) with probability > 1 − 1
q(n) for infinitely

many values n which contradicts f being weakly one-way. This proves the theorem.

4 Universal OWF

We now show how to construct a universal OWF funiv which is guaranteed to be one-way
if any one-way function exists.

funiv(x):

- Parse x = (<M>,x∗) where <M> is a description of a TM M and |<M>| = log(n).

- Run M(x∗) for O(n2) steps and set z to be the output or z = 0 if the computation
does not terminate.

- Output y = (<M>, z).

Remark: we will assume that the encoding < · > ignores leading 0’s so that the string w
and 0`w encode the same TM. We need this to ensure that if some TM can be encoded by
a string of size a then there exists some encoding of this TM of every size > a.

Theorem 2 If OWFs exists, funiv is a weak OWF. By using hardness amplification we can
then convert it to a strong OWF f ′univ.

Proof: Assume g is OWF, we can assume without loss of generality that the run-time of g
is O(n2) (else if the runtime is some nc, use g′(x) = g(x′) where x′ is the first n1/c bits of
x; we know that g′ is one-way if g is as shown on the homework and its run time is O(n)).
Let a = |<g>| be some constant.

Fix some PPT attacker A. We want to analyze:

Lecture 10, Page 4

Pr

funiv(x′) = y :

x← {0, 1}n
x = (<M>,x∗)
y ← funiv(x)
x′ ← A(y)

Let S be the event that A succeeds in the above experiment.

Then

Pr[S] = Pr[S|M = g] Pr[M = g] + Pr[S|M 6= g] Pr[M 6= g]

= Pr[S|M = g] + Pr[M 6= g]

≤ negl(n) +

(
1− 1

2log(n)

)
≤ 1− 1

2n
.

where the third line holds since Pr[S|M = g] is the probability that A inverts g and
Pr[M = g] > 1

2log(n) for all log n > a.

The idea of a universal one-way function is amazing. It means we don’t have to work hard
to build secure crypto; we can just be lazy and rely on the above universal one-way function
and we can rest assured that our cryptosystems are secure if any secure cryptosystems exist
at all! Unfortunately, this approach only works in theory but does not lead to practical
cryptosystems that can be used in real life. The problem is that although the universal OWF
is asymptotically secure the concrete security is terrible! For example, it may be the case
that the smallest one-way function g has description size a = 1000 bits. In that case, the
security of the universal OWF we constructed only starts kicking in when n > 2a > 21000.
Although this is a constant, it is so large that using such large n is completely impossible!

5 Collision Resistant Hash Functions

A hash function H compresses a long input x into a short digest H(x). Although the
function is many-to-one, it should be hard to find collisions x 6= x′ for which H(x) = H(x′).
Therefore, if you get a digest H(x) there is only a single corresponding preimage x that
anybody can give you that would match this digest (otherwise someone would have found
a collision).

Definition 2 A function H : {0, 1}n × {0, 1}`(n) → {0, 1}n where `(n) > n is a collision
resistant hash function (CRHF) when H is computable in polynomial time and for all PPT
A:

Pr[Hs(x) = Hs(x
′) ∧ x 6= x′ : s← {0, 1}n, (x, x′)← A(1n, s)] = negl(n)

♦
Note that the presences of the seed s in the definition. This seed is public and the

adversary should not be able to find collisions even if it given the seed. The reason that we
need a seed is that, without it, there is always an efficient (non-uniform) adversary A that

Lecture 10, Page 5

simply has a hard coded collision x, x′ for which H(x) = H(x′) and outputs this collision.
The inclusion of the seed s precludes such trivial attacks.

Lecture 10, Page 6

