
CS-7880 Graduate Cryptography October 3, 2015

Problem Set 1

Lecturer: Daniel Wichs Due: Oct. 20, 2015

Problem 1 (Message Authentication, Bug Fix) 5 points

Let F be a finite field. In class, I defined the message authentication code

MAC : F2 × Fd → F : MAC(k,m) =
d−1∑
i=0

mix
i + y

with key k = (x, y) and message m = (m0, . . . ,md−1). I claimed that this is a statistically secure
one-time with security ε = d−1

|F| . Show that, this is not true. In fact, show that there exists messages

m 6= m′ ∈ Fd such that, given MAC(K,m) for a uniformly random K in F2, it’s possible to come
up with MAC(K,m′) with probability 1.

The correct construction (it has now been corrected in the slides, notes) should have been:

MAC : F2 × Fd → F : MAC(k,m) =

d∑
i=1

mix
i + y

where k = (x, y) and m = (m1, . . . ,md). The index i should go from 1 to d not 0 to d− 1. This is
a statistically secure one-time with security ε = d

q .
Where does the proof of security for the second construction fail with the first construction?

Problem 2 (t-wise independent hash) 10 pts

A hash function h : K×U → V is t-wise independent if for all t distinct values x1, . . . , xt ∈ U and
any y1, . . . , yt ∈ V we have

Pr[h(K,x1) = y1, . . . , h(K,xt) = yt] =

t∏
i=1

Pr[h(K,xi) = yi] =
1

|V|t

where K is a random variable that’s uniform over K.
Use the ideas we saw in class about polynomials over a finite field F (e.g., in the construction

of one-time MACs and Shamir secret sharing) to construct such a scheme for any t with K = Ft

and U = V = F.
A t-wise independent hash function can be used as a statistically secure MAC which can be

used to authenticate up to t− 1 messages. Explain why.
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Problem 3 (Two-time Security?) 15 pts

We showed that the one-time pad is a perfectly secure “one-time” encryption scheme that allows
us to encrypt a single message. In this problem, we want to define “two-time” encryption that can
be used twice to encrypt two messages.

Part A: Here is a natural way to define two-time perfect secrecy for encryption. For any two
pairs of messages (m0,m1) ∈ M×M and (m′0,m

′
1) ∈ M×M and for any ciphertexts c0, c1 we

have
Pr[Enc(K,m0) = c0,Enc(K,m1) = c1] = Pr[Enc(K,m′0) = c0,Enc(K,m′1) = c1]

Show that no encryption scheme can satisfy this definition.
Part B: To overcome the limitation in part A, we first relax the problem by considering

statistical security where we require that for all (m0,m1), (m
′
0,m

′
1) ∈M×M

SD( (Enc(K,m0),Enc(K,m1)) , (Enc(K,m′0),Enc(K,m′1)) ) ≤ ε

Show that, even with this relaxation, no encryption scheme with a deterministic encryption proce-
dure can satisfy the above with ε < 1.

We relax the problem further by considering randomized encryption schemes where, for a fixed
k,m the encryption procedure Enc(k,m) can additional randomness to create the ciphertext. We
require perfect correctness so that for all m ∈ M, k ∈ K : Pr[Dec(k,Enc(k,m)) = m] = 1
where the probability is over the randomness of the encryption procedure. Show that there exists
a randomized encryption scheme that achieves the above for arbitrarily small ε.

(Hint: Use t-wise independent hash functions from the previous problem with t = 2. Let the
encryption procedure call the hash function on a random input to derive a new “ one-time pad”
key on each invocation. )

Problem 4 (OWFs with Short Output Don’t Exist) 5 pts

Let f : {0, 1}∗ → {0, 1}∗ be a function such that |f(x)| ≤ c log |x| for all x ∈ {0, 1}∗ and for some
fixed constant c > 0. Show that f is not a one-way function.

Problem 5 (OWF or Not?) 20 pts

Assume that f : {0, 1}∗ → {0, 1}∗ is a one-way function (OWF). For each of the following candidate
constructions f ′ argue whether it is also necessarily a OWF or not. If yes, give a proof else give a
counter-example (assuming one-way functions exist, show that there is a one-way function f such
that f ′ is not a one-way function).

• f ′(x) = (f(x), x[1]) where x[1] is the first bit of x.

• f ′(x) = (f(x), x[1], . . . , x[bn/2c]) where n = |x| and x[i] denotes the i’th bit of x.

• f ′(x) = f(x||0) where || denotes string concatenation.

• f ′(x) = f(x)||f(x+ 1) where || denotes string concatenation and x is intepreted as an integer
in binary with addition performed modulo 2n for |x| = n.

PS1, Page 2



• f ′(x) = f(G(x)) where G is a pseudorandom generator (with some polynomial stretch).

Problem 6 (Pseudorandom Generators) 10 pts

Let G be any candidate pseudorandom generator (PRG) with 1-bit stretch (i.e., when |x| = n,
|G(x)| = n + 1). For any algorithm D, we define the distinguishing advantage of D as

|Pr[D(G(Un)) = 1]− Pr[D(Un+1) = 1]|

where Um denotes a uniformly random m-bit string.

• Construct an inefficient distinguisher D that has advantage 1/2.

• Construct an efficient (PPT) distinguisher D that has advantage 2−(n+1).

• Generalize the above to show that for any time bound t(n) ≤ 2n, there is a distinguisher D
that runs in time t(n)poly(n) and has advantage t(n)2−(n+1).

Problem 7 (PRGs imply OWFs) 10 pts

Show that if G : {0, 1}∗ → {0, 1}∗ is a pseudorandom generator (PRG) with n-bit stretch, where
n is the security parameter, then G is a one-way function.

Problem 8 (PRG or Not?) 20 pts

Assume that G : {0, 1}∗ → {0, 1}∗ is a pseudorandom generator (PRG) with n-bit stretch. For
each of the following candidate constructions argue whether it is also necessarily a PRG or not. If
yes, give a proof else give a counter-example.

• G′(x) = G(x + 1) where addition is performed modulo 2n for x ∈ {0, 1}n.

• G′(x) = G(x||0) where || denotes string concatenation.

• G′(x) = G(x||G(x)).

• G′(x) = G(x) + x where we interpret x and G(x) as integers in binary and addition is
performed modulo 2|G(x)|.

• G′(x) = G(f(x)) where f is a one-way function.
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