Problem 1 (Message Authentication, Bug Fix)

5 points
Let \mathbb{F} be a finite field. In class, I defined the message authentication code

$$
\mathrm{MAC}: \mathbb{F}^{2} \times \mathbb{F}^{d} \rightarrow \mathbb{F} \quad: \quad \operatorname{MAC}(k, m)=\sum_{i=0}^{d-1} m_{i} x^{i}+y
$$

with key $k=(x, y)$ and message $m=\left(m_{0}, \ldots, m_{d-1}\right)$. I claimed that this is a statistically secure one-time with security $\varepsilon=\frac{d-1}{|\mathbb{F}|}$. Show that, this is not true. In fact, show that there exists messages $m \neq m^{\prime} \in \mathbb{F}^{d}$ such that, given $\operatorname{MAC}(K, m)$ for a uniformly random K in \mathbb{F}^{2}, it's possible to come up with $\operatorname{MAC}\left(K, m^{\prime}\right)$ with probability 1 .

The correct construction (it has now been corrected in the slides, notes) should have been:

$$
\mathrm{MAC}: \mathbb{F}^{2} \times \mathbb{F}^{d} \rightarrow \mathbb{F} \quad: \quad \mathrm{MAC}(k, m)=\sum_{i=1}^{d} m_{i} x^{i}+y
$$

where $k=(x, y)$ and $m=\left(m_{1}, \ldots, m_{d}\right)$. The index i should go from 1 to d not 0 to $d-1$. This is a statistically secure one-time with security $\varepsilon=\frac{d}{q}$.

Where does the proof of security for the second construction fail with the first construction?

Problem 2 (t-wise independent hash)

A hash function $h: \mathcal{K} \times \mathcal{U} \rightarrow \mathcal{V}$ is t-wise independent if for all t distinct values $x_{1}, \ldots, x_{t} \in \mathcal{U}$ and any $y_{1}, \ldots, y_{t} \in \mathcal{V}$ we have

$$
\operatorname{Pr}\left[h\left(K, x_{1}\right)=y_{1}, \ldots, h\left(K, x_{t}\right)=y_{t}\right]=\prod_{i=1}^{t} \operatorname{Pr}\left[h\left(K, x_{i}\right)=y_{i}\right]=\frac{1}{|\mathcal{V}|^{t}}
$$

where K is a random variable that's uniform over \mathcal{K}.
Use the ideas we saw in class about polynomials over a finite field \mathbb{F} (e.g., in the construction of one-time MACs and Shamir secret sharing) to construct such a scheme for any t with $\mathcal{K}=\mathbb{F}^{t}$ and $\mathcal{U}=\mathcal{V}=\mathbb{F}$.

A t-wise independent hash function can be used as a statistically secure MAC which can be used to authenticate up to $t-1$ messages. Explain why.

Problem 3 (Two-time Security?)

We showed that the one-time pad is a perfectly secure "one-time" encryption scheme that allows us to encrypt a single message. In this problem, we want to define "two-time" encryption that can be used twice to encrypt two messages.

Part A: Here is a natural way to define two-time perfect secrecy for encryption. For any two pairs of messages $\left(m_{0}, m_{1}\right) \in \mathcal{M} \times \mathcal{M}$ and $\left(m_{0}^{\prime}, m_{1}^{\prime}\right) \in \mathcal{M} \times \mathcal{M}$ and for any ciphertexts c_{0}, c_{1} we have

$$
\operatorname{Pr}\left[\operatorname{Enc}\left(K, m_{0}\right)=c_{0}, \operatorname{Enc}\left(K, m_{1}\right)=c_{1}\right]=\operatorname{Pr}\left[\operatorname{Enc}\left(K, m_{0}^{\prime}\right)=c_{0}, \operatorname{Enc}\left(K, m_{1}^{\prime}\right)=c_{1}\right]
$$

Show that no encryption scheme can satisfy this definition.
Part B: To overcome the limitation in part A, we first relax the problem by considering statistical security where we require that for all $\left(m_{0}, m_{1}\right),\left(m_{0}^{\prime}, m_{1}^{\prime}\right) \in \mathcal{M} \times \mathcal{M}$

$$
\mathrm{SD}\left(\left(\operatorname{Enc}\left(K, m_{0}\right), \operatorname{Enc}\left(K, m_{1}\right)\right) \quad, \quad\left(\operatorname{Enc}\left(K, m_{0}^{\prime}\right), \operatorname{Enc}\left(K, m_{1}^{\prime}\right)\right) \quad\right) \leq \varepsilon
$$

Show that, even with this relaxation, no encryption scheme with a deterministic encryption procedure can satisfy the above with $\varepsilon<1$.

We relax the problem further by considering randomized encryption schemes where, for a fixed k, m the encryption procedure $\operatorname{Enc}(k, m)$ can additional randomness to create the ciphertext. We require perfect correctness so that for all $m \in \mathcal{M}, k \in \mathcal{K}: \operatorname{Pr}[\operatorname{Dec}(k, \operatorname{Enc}(k, m))=m]=1$ where the probability is over the randomness of the encryption procedure. Show that there exists a randomized encryption scheme that achieves the above for arbitrarily small ε.
(Hint: Use t-wise independent hash functions from the previous problem with $t=2$. Let the encryption procedure call the hash function on a random input to derive a new "one-time pad" key on each invocation.)

Problem 4 (OWFs with Short Output Don't Exist)

Let $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ be a function such that $|f(x)| \leq c \log |x|$ for all $x \in\{0,1\}^{*}$ and for some fixed constant $c>0$. Show that f is not a one-way function.

Problem 5 (OWF or Not?)

Assume that $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a one-way function (OWF). For each of the following candidate constructions f^{\prime} argue whether it is also necessarily a OWF or not. If yes, give a proof else give a counter-example (assuming one-way functions exist, show that there is a one-way function f such that f^{\prime} is not a one-way function).

- $f^{\prime}(x)=(f(x), x[1])$ where $x[1]$ is the first bit of x.
- $f^{\prime}(x)=(f(x), x[1], \ldots, x[\lfloor n / 2\rfloor])$ where $n=|x|$ and $x[i]$ denotes the i^{\prime} th bit of x.
- $f^{\prime}(x)=f(x| | 0)$ where $\|$ denotes string concatenation.
- $f^{\prime}(x)=f(x) \| f(x+1)$ where $\|$ denotes string concatenation and x is intepreted as an integer in binary with addition performed modulo 2^{n} for $|x|=n$.
- $f^{\prime}(x)=f(G(x))$ where G is a pseudorandom generator (with some polynomial stretch).

Problem 6 (Pseudorandom Generators)

Let G be any candidate pseudorandom generator (PRG) with 1-bit stretch (i.e., when $|x|=n$, $|G(x)|=n+1)$. For any algorithm D, we define the distinguishing advantage of D as

$$
\left|\operatorname{Pr}\left[D\left(G\left(U_{n}\right)\right)=1\right]-\operatorname{Pr}\left[D\left(U_{n+1}\right)=1\right]\right|
$$

where U_{m} denotes a uniformly random m-bit string.

- Construct an inefficient distinguisher D that has advantage $1 / 2$.
- Construct an efficient (PPT) distinguisher D that has advantage $2^{-(n+1)}$.
- Generalize the above to show that for any time bound $t(n) \leq 2^{n}$, there is a distinguisher D that runs in time $t(n)$ poly (n) and has advantage $t(n) 2^{-(n+1)}$.

Problem 7 (PRGs imply OWFs)

Show that if $G:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a pseudorandom generator (PRG) with n-bit stretch, where n is the security parameter, then G is a one-way function.

Problem 8 (PRG or Not?)

Assume that $G:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a pseudorandom generator (PRG) with n-bit stretch. For each of the following candidate constructions argue whether it is also necessarily a PRG or not. If yes, give a proof else give a counter-example.

- $G^{\prime}(x)=G(x+1)$ where addition is performed modulo 2^{n} for $x \in\{0,1\}^{n}$.
- $G^{\prime}(x)=G(x \| 0)$ where $\|$ denotes string concatenation.
- $G^{\prime}(x)=G(x \| G(x))$.
- $G^{\prime}(x)=G(x)+x$ where we interpret x and $G(x)$ as integers in binary and addition is performed modulo $2^{|G(x)|}$.
- $G^{\prime}(x)=G(f(x))$ where f is a one-way function.

