
CS 7880 Graduate Cryptography October 08, 2015

Lecture 8: Goldreich-Levin Theorem (continued)

Lecturer: Daniel Wichs Scribe: Tanay Mehta

1 Topics Covered

• Finish proof of Goldreich-Levin Theorem

• Constructions of PRGs from OWFs

2 Goldreich-Levin Theorem

Last time, we began the proof of the Goldreich-Levin Theorem, which we will state again.

Theorem 1 (Goldreich-Levin) Let f be a one-way function and define

g(x, r) = (f(x), r)

where |x| = |r|. Define
hc(x, r) = 〈x, r〉

where 〈x, r〉 is the usual inner product on (Z/2Z). Then, g is also a one-way function, and
hc is a hardcore predicate of g.

We also stated the following two claims and proved the first.

Claim 1 If Prx,r[P (f(x), r) = 〈x, r〉] ≥ 1
2 + ε(n) then for all n ∈ N there exists a set

Gn ⊆ {0, 1}n of size |Gn| ≥ ε(n)
2 2n such that for all x ∈ Gn

Pr
r

[P (f(x), r) = 〈x, r〉] ≥ 1

2
+
ε(n)

2

Claim 2 (Decoder) For any δ(n) = 1
O(nc) and constant c, there exists a probabilistic

polynomial time algorithm DecO (decoder with oracle O) and there exists p(n) = poly(n)
such that for all n ∈ N and for all x ∈ {0, 1}n we have

Pr
r

[O(r) = 〈x, r〉] ≥ 1

2
+ δ(n)⇒ Pr[DecO(1n) = x] ≥ 1

p(n)

Note that the second probability function is over the randomness of DecO.

Let us interpret this claim from the context of coding theory. We can think of x ∈ {0, 1}n
as a message and define an exponentially long codeword c ∈ {0, 1}2

n

defined by c[r] = 〈x, r〉

Lecture 8, Page 1

for all r ∈ {0, 1}n, where we can think of r as denoting a position between 0, . . . , 2n − 1
in binary. We can think of the oracle O as defining a “noisy codewrod” c′ defined via
c′[r] = O(r) with (1/2− δ(n))n errors where c′[r] 6= c[r]. From coding theory, we know that
c′ cannot be uniquely decoded to recover the correct message x with complete certainty
unless the number of errors is ≤ (1/4)n, meaning that δ(n) ≥ 1/4. This holds even if we
didn’t care about the efficiency of the decoder and it could read all of c′.
The implication of the above claim tells us two things:

1. Although c′ cannot be uniquely decoded to recover the correct message x with com-
plete certainty, it can be decoded to recover x with probability 1/p(n) for some poly-
nomial p(n). By running such a decoder many times, we can recover a polynomial
size list of candidate values that contains x with extremely high probability. This is
called list decoding and, in general, it allows us to recover from much higher error
rates than unique decoding.

2. Not only can we decode c′ to recover x with probability 1/p(n), we can do so in poly-
nomial time by only querying the oracle O(r) = c′[r] at polynomially many positions
r. This is called local decoding, meaning that we do not need to read the entire code-
word to recover the message. This is essential in our setting since the codeword c′

is of size 2n and therefore reading it in its entirety (i.e., querying O at all values r)
would take exponential time.

Let us return to the proof of Goldreich-Levin. We will complete the proof of the theorem
assuming that the decoder claim is true, and complete it’s proof afterwards.

Proof: We proceed by contradiction. Assume hc is not a hardcore predicate of g. Using the
unpredictability definition of hardcore predicates, there exists a probabilistic polynomial-
time algorithm P and ε(n) 6= negl(n) such that

Pr
x,r

[P (f(x), r) = 〈x, r〉] ≥ 1

2
+ ε(n)

where the probability is over x, r ← {0, 1}n. We show that this means we can invert the
one-way function f .

By the first claim, we have that for all n ∈ N there exists Gn ⊆ {0, 1}n such that

|Gn| ≥ ε(n)
2 2n such that for all x ∈ Gn

Pr
r

[P (f(x), r) = 〈x, r〉] ≥ 1

2
+
ε(n)

2

where the probability is over r ← {0, 1}n.
We wish to invert y = f(x) by applying the decoder from the second claim with the

oracle O(·) = P (y, ·) so that O(r) = P (y, r). Intuitively, we want to fix the parameter δ(n)

of the decoder to δ(n) = ε(n)
2 . However, we only know that ε(n) is not negligible which is

not the same thing as ε(n) = 1/poly(n). Instead, ε(n) 6= negl(n) implies that for infinitely
many n ∈ N (let’s call these “good” n) and some constant c we have ε(n) > 1

nc . We will set

Lecture 8, Page 2

δ(n) = 1
2nc so that ε(n) ≥ δ(n) for all “good” n. This ensures that for all “good” n and all

x ∈ Gn we have

Pr[P (f(x), r) = 〈x, r〉] ≥ 1

2
+ δ(n)

Now using the decoder claim, we will define the inverter for the one-way function f ,

A(y) =
{

Output DecP (y,·)(1n) // Dec is tailored to δ(n)

and obtain that for all “good” n and all x ∈ Gn we have:

Pr[A(f(x)) = x] = Pr[DecP (f(x),·)(1n) = x] ≥ 1

p(n)
.

where the randomness is over the random choices of A and p is some polynomial. To finish
the proof, we take the probability over a random x← {0, 1}n. Then for all “good” n ∈ N

Pr
x

[A(f(x)) = x] ≥ Pr
x

[A(f(x)) = x|x ∈ Gn] · Pr
x

[x ∈ Gn]

≥ 1

p(n)
· ε(n)

2
=

1

p(n)
· δ(n)

Thus, we have that Pr[A(f(x)) = x] 6= negl(n) and that f is not a one-way function.

Now we need to prove that the decoder claim is true. We will do this by designing the
decoder DecO(1n). Recall the simple cases we looked at last lecture to build intuition. We
wanted to learn the ith bit of x. Let b1 = O(r) and bi = O(r + ei). Then, if the oracle
answers correctly both times we have b1 = 〈x, r〉 and bi = 〈x, r + ei〉 which means that we
can recover

xi = bi − b1 = 〈x, ei〉

However, the above is only meaningful if the probability that the oracle answers correctly
twice is bigger than a half, which is only meaningful if the oracle answers correctly with
probability > 3/4 (by taking union bound). The main intuition behind the actual strategy
is to query the oracle on many pairwise independent inputs. In that case, even if the oracle
answers correctly with probability just slightly higher than > 1/2 we can argue that the
majority of the answers are likely to be correct using the Chebyshev bound.

Proof: We start out by defining the decoder.

DecO(1n):

1. Set ` = dlog(n
δ2(n)

+ 1)e = O(log n).

//This is for technical reasons that will become clear later.

2. Choose s1, . . . , s` ← {0, 1}n
σ1, . . . , σ` ← {0, 1}

3. For all I ⊆ [`] = 1, . . . , l, where I 6= ∅

rI :=
∑

i∈I si (mod 2)

σI :=
∑

i∈I σi (mod 2)

Lecture 8, Page 3

4. For all j ∈ [n]

For all I ⊆ [`], I 6= ∅

x̃Ij := O(rI + ej)− σI

Set x̃j := majority{x̃Ij}

5. Output (x̃1, . . . , x̃n)

Note that for any I1 6= I2 ⊆ [`] with I1, I2 6= ∅ the values rI2 , rI1 are uniformly random and
independent. This is because if I1 6= I2 then there is some i ∈ I1 but i /∈ I2 (or vice versa),
and therefore even conditioned on the value of rI2 , the random variable rI1 is random and
independent over the choice of si. This means that the random variables rI are pairwise
independent.

We will now proceed with a series of claims.
Define the event LG (“lucky guess”) to be σi = 〈x, si〉 for all i ∈ [`].
Define the events EIj to be the event that O(rI + ej) = 〈x, rI + ej〉.

Claim 3 If LG occurs and EIj occurs then x̃Ij = xj.

If LG occurs and
∑

j E
I
j >

1
2(2` − 1) then x̃j = xj.

Proof: If LG occurs, then for all I ⊆ [`]:

σI =
∑
i∈I

σi =
∑
i∈I
〈x, si〉 = 〈x, rI〉

by linearity of inner product. If LG and EIj occur then:

x̃Ij = O(rI + ej)− σI = 〈x, rI + ej〉 − 〈x, rI〉 = 〈x, ej〉 = xj .

The second part follows since if
∑

j E
I
j >

1
2(2` − 1) (majority of the events occur) then

xj = majority{x̃Ij}.

Claim 4 For any j ∈ [n], I ⊆ [`], I 6= ∅ : Pr[EIj = 1] ≥ 1
2 + δ(n). Furthermore for any j,

the events {EIj }I are pairwise indepdendent, and also independent of LG.

Proof: This follows because the values rI are uniformly random are pairwise independent.
Furthermore the values rI only depend on si while the event LG happens with probability
2−` over the choice of σi no matter what values si take on and therefore is independent of
the values si.

Claim 5 For all j ∈ [n]:

Pr[
∑
j

EIj ≤
1

2
(2` − 1) | LG] = Pr[

∑
j

EIj ≤
1

2
(2` − 1)] ≤ 1

4δ2(n) · (2` − 1)
≤ 1

4n

Proof: The first part follows since the events {EIj } independent of LG. The second part

follows directly from Chebyshev inequality and the fact that the events {EIj } are pairwise
independent (proof omitted).

Lecture 8, Page 4

The middle term of the Chebyshev Inequality is the reason we defined ` to be the way we
did. We now finish off the proof of the decoder claim. For all j ∈ [n]

Pr[x̃j 6= xj |LG] ≤ Pr[
∑
j

EIj ≤
1

2
(2` − 1) | LG] ≤ 1

4n

By the union bound, we have

Pr[∃j x̃j 6= xj |LG] ≤ 1

4n
· n =

1

4

By taking the complement of the above probability,

Pr[x̃ = x|LG] ≥ 3

4

Finally, we have

Pr[x̃ = x] ≥ Pr[x̃ = x|LG] · Pr[LG]

≥ 3

4
· Pr[LG] =

3

4
· 2−` =

1

poly(n)
.

Intuitively, we have picked ` = O(log n) random vectors si and guessed their inner
products with x to be 〈x, si〉 = σi. Since ` is small, we guess correctly with probability
2−` = 1/poly(n). Then we try to recover every bit xj of x by calling the oracle on many
values rI + ej which are pairwise independent but allow us to recover xj if the majority
of the answers is correct. Since the oracle is expected to answer correctly with probability
1
2 + δ(n) on each query, we can use the Chebyshev bound to argue that the majority of the
answers is correct with high probability.

PRG from OWP. The Goldreich-Levin theorem allows us to construct a PRG from any
one-way permutation (OWP).

Corollary 1 If f is a one-way permutation (OWP), then g is a one-way permutation with
hardcore predicate hc (as defined in Goldreich-Levin theorem) and G(x) = (g(x), hc(x)) is
a pseudorandom generator.

Proof:
G(Un) ≡ (g(x), hc(x)) ≈ (g(x), b) ≡ Un+1

where x← {0, 1}n, b← {0, 1} and Um denotes the uniform distribution over {0, 1}m.

Lecture 8, Page 5

PRG from injective OWF. The above shows how to construct PRGs from OWPs.
Using a slightly more complicated construction, we can construct a PRG from any injec-
tive one-way function. Let’s say f is an injective one-way function but not necessarily a
permutation. This implies that g is an injective one-way function with hardcore predicate
hc(x) (as defined in Goldreich-Levin theorem) but the above construction isn’t necesserally
a PRG since g(x) is not necessarily uniformly random. Consider the function

gm(x̄) = (g(x1), hc(x1), . . . , g(xm), hc(xm))

where x̄ = (x1, . . . , xm) ∈ {0, 1}nm. Then

gm(x̄) = (g(x1), hc(x1), . . . , g(xm), hc(xm)) ≈ (g(x1), b1, . . . , g(xm), bm)

where b1, . . . , bm ← {0, 1}. The left hand side has only mn bits of entropy but the right
hand side has mn+m bits of entropy. So we get m bits of computational entropy for free.
We can then construct a PRG by relying on randomness extractors to convert entropy into
a uniformly random output.

Claim 6 If m = ω(log n) and Ext is a universal hash function based extractor with a w-
bit seed and ` = nm + 1 bit output, then G(x̄, s) = (s, Ext(gm(x̄), s)) is a pseudorandom
generator with 1 bit stretch.

Note: the input to the PRG consists of n′ = nm+w bits and the output is n′ + 1 bits. We
think of n rather then n′ as the security parameter.

Proof:

G(x̄, s) ≡ (s, Ext((g(x1), hc(x1), . . . , g(xm), hc(xm)), s))

≈ (s, Ext((g(x1), b1, . . . , g(xm), bm), s))

≈ (Uw, Unm+1)

where x̄ ← {0, 1}nm, s ← {0, 1}w and bi ← {0, 1}. The first ≈ comes from the Goldreich-
Levin theorem. The second ≈ comes from the leftover hash lemma and relying on the fact
that we have nm+m bits of entropy and ` = nm+1 bit output and therefore the statistical
distance from uniform is ε = 2−(m−1)/2 = negl(n).

It turns out that it’s possible to construct a PRG from any one-way function. This
requires more work and we will not prove this in class.

Lecture 8, Page 6

