CS 7880 Graduate Cryptography

Lecture 7: Goldreich-Levin Theorem

Lecturer: Daniel Wichs
Scribe: Hridam Basu

1 Topic Covered

- Hard core Predicate
- Goldreich-Levin Theorem

2 Hard Core Predicate

We are going to provide two definitions of hard core predicate and show that the two definitions are equivalent:-
Definition 1 [Indistinguishability] A polynomial time function $h c:\{0,1\}^{*} \rightarrow\{0,1\}$ is a hard core predicate of f if $(f(x), h c(x)) \approx(f(x), b)$ where $x \leftarrow\{0,1\}^{n}, b \leftarrow\{0,1\}$

Now one might ask whether there exists a hard core predicate for every One-Way Function(OWF)? There is a good news and a bad news to this question. At first, let us reveal the bad news. There is no single function $h c$ which is a hard core predicate for every OWF. Because if f is a OWF then $f^{\prime}(x)=(f(x), h c(x))$ is also a OWF but $h c$ is not a hard core predicate for f^{\prime}. But the good news is that given any one-way function f we can construct a new one-way function g and a hard-core predicate for g.

Now we present an alternative deifinition of hard core predicate which is easier to work with.

Definition 2 [Unpredictability] A polynomial time function $h c:\{0,1\}^{*} \rightarrow\{0,1\}$ is a hard core predicate of f if \forall PPT "predictor" P

$$
\operatorname{Pr}\left[P(f(x))=h c(x): x \leftarrow\{0,1\}^{n}\right] \leq 1 / 2+\operatorname{neg}(n)
$$

This definition means that an adversary can't do much better in predicting $h c(x)$ than simply guessing a random bit.

Lemma 1 Indistinguishability implies Unpredictability.

Proof: We prove that if $h c$ does not satisfy unpredictability than it does not satisfy indistinguisahability.

Assume \exists PPT "predictor" P such that $\operatorname{Pr}[P(f(x))=h c(x)] \geq 1 / 2+\varepsilon(n)$. Define a distinguisher D via

$$
D(y, b)=\{\text { If } P(y)=b, \text { output } 1, \text { else output } 0\}
$$

Lecture 7, Page 1

Then

$$
\operatorname{Pr}[D(f(x), h c(x))=1]-\operatorname{Pr}[D(f(x), b)=1] \geq \frac{1}{2}+\varepsilon(n)-\frac{1}{2}=\varepsilon(n)
$$

where all probabilities are over $x \leftarrow\{0,1\}^{n}, b \leftarrow\{0,1\}$.
So if we can predict with non-negligible advantage ε, then we can distinguish by nonnegligible advantage ε.

Lemma 2 Unpredictability implies indistinguishability.

Proof: We prove that if $h c$ does not satisfy indistinguisahability than it does not satisfy unpredictability. Suppose \exists PPT "distinguisher" D and $\varepsilon(n) \neq \operatorname{negl}(n)$ such that

$$
|\operatorname{Pr}[D(f(x), h c(x))=1]-\operatorname{Pr}[D(f(x), b)=1]| \geq \varepsilon(n)
$$

where $x \leftarrow\{0,1\}^{n}, b \leftarrow\{0,1\}$.
Without loss of generality, we can remove the absolute value of the above equation by potentially flipping the output bit of D to ensure that the difference is positive. In slightly more detail, we know that $|\operatorname{Pr}[D(f(x), h c(x))=1]-\operatorname{Pr}[D(f(x), b)=1]|>1 / n^{c}$ for some constant c and infintiely many n. Therefore either $\operatorname{Pr}[D(f(x), h c(x))=1]-\operatorname{Pr}[D(f(x), b)=$ $1]>1 / n^{c}$ for infinitely many n or $\operatorname{Pr}[D(f(x), h c(x))=0]-\operatorname{Pr}[D(f(x), b)=0]>1 / n^{c}$ for infinitely many n. In the latter case, we can flip the output bit of D.

Define

$$
P(y)=\{\text { Choose } b \leftarrow\{0,1\} \quad: \quad \text { If } D(y, b)=1 \text {, output } b \text {, else } \bar{b}\}
$$

First note that:

$$
\begin{aligned}
& \operatorname{Pr}[D(f(x), b)=1]=\operatorname{Pr}[D(f(x), b)=1, b=h c(x)]+\operatorname{Pr}[D(f(x), b)=1, b=\overline{h c}(x)] \\
&=\frac{1}{2}(\operatorname{Pr}[D(f(x), h c(x))=1]+\operatorname{Pr}[D(f(x), \overline{c c}(x)=1]) \\
& \Rightarrow \operatorname{Pr}[D(f(x), \overline{h c}(x)=1]=2 \operatorname{Pr}[D(f(x), b)=1]-\operatorname{Pr}[D(f(x), h c(x))=1]
\end{aligned}
$$

This implies

$$
\begin{aligned}
\operatorname{Pr}[P(f(x))=h c(x)] & =\operatorname{Pr}[D(f(x), h c(x))=1, b=h c(x)]+\operatorname{Pr}[D(f(x), \overline{h c}(x))=0, b=\overline{h c}(x)] \\
& =\frac{1}{2}(\operatorname{Pr}[D(f(x), h c(x)=1]+\operatorname{Pr}[D(f(x), \overline{h c}(x)=0]) \\
& =\frac{1}{2}(\operatorname{Pr}[D(f(x), h c(x)=1]+1-\operatorname{Pr}[D(f(x), \overline{h c}(x)=1]) \\
& =\frac{1}{2}+\frac{1}{2}(\operatorname{Pr}[D(f(x), h c(x)=1]-\operatorname{Pr}[D(f(x), \overline{h c}(x)=1]) \\
& =\frac{1}{2}+\frac{1}{2}(2 \operatorname{Pr}[D(f(x), b)=1]-\operatorname{Pr}[D(f(x), h c(x))=1]) \\
& =\frac{1}{2}+\varepsilon(n)
\end{aligned}
$$

where the second to last line follows by substituting for $\operatorname{Pr}[D(f(x), \overline{h c}(x)=1]$ using the previous derivation.

3 Goldreich Levin Theorem

Theorem 1 If f is a one way function, then $g(x, r)=(f(x), r)$ is also a one way function and $h c(x, r)=\langle x, r\rangle=\sum\left(x_{i} \cdot r_{i}\right)(\bmod 2)$ is a hard core predicate of g.

As an alternate interpretation of the Goldreich-Levin theorem, we can think of $h c(x, r)=$ $\langle x, r\rangle$ as a randomized hard core predicate for any one way function f, meaning that

$$
(f(x), r, h c(x, r)) \approx(f(x), r, b)
$$

where $x, r \leftarrow\{0,1\}^{n}, b \leftarrow\{0,1\}$.
We will finish the poof of the Goldreich-Levin theorem in the next lecture, but let's start to build some intuition for the proof and see what the main components are.

We do a proof by contradiction. Suppose $h c$ is not a hard core predicate of g, then we wish to show that f is not a one-way function. By the unpredictability definition of hard-core predictates we know that $\exists \operatorname{PPT} \mathrm{P}, \varepsilon(n) \neq \operatorname{negl}(\mathrm{n})$ such that
$\operatorname{Pr}[P(f(x), r)=\langle x, r\rangle] \geq \frac{1}{2}+\varepsilon(n)$
We want to show that we can invert f. We first explore some simple cases that make the proof much easier.

Simple Case 1 : Suppose $\operatorname{Pr}[P(f(x), r)=\langle x, r\rangle]=1$
The Algorithm to invert OWF f is:-
A(y):
for $i=1, \ldots, n$
$\tilde{x}_{i}=P\left(y, e_{i}\right)$
Output $x=\left(\tilde{x}_{1}, \ldots . \tilde{x}_{n}\right)$
Here e_{i} denotes the i 'th standard basis vector (all 0 except for 1 in i 'th position). The algorithm is correct since we are guaranteed that $\tilde{x}_{i}=P\left(y, e_{i}\right)=\left\langle x, e_{i}\right\rangle=x_{i}$.

Simple Case 2: Suppose $\forall x$ (ie, not only for any random x), $\operatorname{Pr}[P(f(x), r)=\langle x, r\rangle] \geq$ $\frac{3}{4}+\frac{1}{p(n)}$ where the probability is over $r \leftarrow\{0,1\}^{n}$. In this case, we have no guarantees on $P\left(y, e_{i}\right)$ giving us correct answers since e_{i} is not random. Here is a smarter strategy.

Call $b_{1}=P(y, r), b_{2}=P\left(y, r+e_{i}\right)$ where $r \leftarrow\{0,1\}^{n}$.
Output $x_{i}=b_{2}-b_{1}$
Note: r and $r+e_{i}$ are individually random but not independent.
If $P(y, r), P\left(y, r+e_{i}\right)$ are both "correct" then: $x_{i}=b_{2}-b_{1}=\left\langle x, r+e_{i}\right\rangle-\langle x, r\rangle=$ $\left\langle x, e_{i}\right\rangle$ is also correct. Moreover:
$\operatorname{Pr}\left[\right.$ Both b_{1} and b_{2} are correct $]$
$=1-\operatorname{Pr}[$ At least one of them is wrong $]$
$=1-\left(\frac{1}{4}-\frac{1}{p(n)}+\frac{1}{4}-\frac{1}{p(n)}\right)=\frac{1}{2}+\frac{2}{p(n)}$
We have to run the above procedure many times for the i-th bit and take the majority vote. If there are enough votes, majority is correct with high probability (Chernoff bound).

There are two main differences between Simple Case 2 and what we need to prove. Most importantly, our predictor is only correct with probability $1 / 2+\varepsilon(n)$ rather than $3 / 4+1 / p(n)$. Secondly, in our case the probability is over a random x, r whereas in simple case 2 it's only over random r for worst-case x. We show how to handle the second problem. Essentially, this is an "averaging argument" which shows that if some probability is high over random x, r then for many x the probability is high over a random r.

Claim $1 \forall n \in \mathbb{N}, \quad \exists G_{n} \subseteq\{0,1\}^{n}$ of size $\left|G_{n}\right| \geq \frac{\varepsilon(n)}{2} \cdot 2^{n} \quad\left(\frac{\varepsilon(n)}{2}\right.$ is the density) such that $\forall x \in G_{n}$:

$$
\begin{equation*}
\operatorname{Pr}_{r \leftarrow\{0,1\}^{n}}[P(f(x), r)=\langle x, r\rangle] \geq \frac{1}{2}+\frac{\varepsilon(n)}{2} \tag{1}
\end{equation*}
$$

Proof: Define $G_{n}=\{x:$ equation 1 holds $\}$. Then

$$
\begin{aligned}
\frac{1}{2}+\frac{\varepsilon(n)}{2} & \leq \operatorname{Pr}_{x, r}[P(f(x), r)=\langle x, r\rangle] \\
& =\operatorname{Pr}_{x, r}\left[P(f(x), r)=\langle x, r\rangle, x \in G_{n}\right]+\operatorname{Pr}_{x, r}\left[P(f(x), r)=\langle x, r\rangle, x \notin G_{n}\right] \\
& \leq \operatorname{Pr}_{x}\left[x \in G_{n}\right]+\frac{1}{2}+\frac{\varepsilon(n)}{2} \\
\Rightarrow & \operatorname{Pr}_{x}\left[x \in G_{n}\right] \geq \frac{\varepsilon(n)}{2} \\
\Rightarrow & \left|G_{n}\right| \geq \frac{\varepsilon(n)}{2} \cdot 2^{n}
\end{aligned}
$$

So there are many good values x for which $P(f(x), r)$ answers correctly on most r. In the next lecture we will show that this is sufficient to invert $f(x)$. This is essentially a decoding problem which we abstract in the next claim (to be proved next time):

Claim 2 For any $\delta(n)=\frac{1}{\text { poly }(n)}$ there exists a PPT algorithm Dec ${ }^{O}$ and a polynomial $p(n)=\operatorname{poly}(n)$ such that for all $n \in \mathbb{N}, \forall x \in\{0,1\}^{n}$:
If $\operatorname{Pr}[O(r)=\langle x, r\rangle] \geq \frac{1}{2}+\delta(n)$
then $\operatorname{Pr}\left[D e c^{O}\left(1^{n}\right)=x\right] \geq \frac{1}{p(n)}$.
(The notation Dec ${ }^{O}$ denotes that Dec has oracle access to O meaning that it can call O on arbitrary values r.)

We will prove this claim and discuss a connection to coding theory next time.

