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1 Topic Covered

• Hard core Predicate

• Goldreich-Levin Theorem

2 Hard Core Predicate

We are going to provide two definitions of hard core predicate and show that the two
definitions are equivalent:-

Definition 1 [Indistinguishability] A polynomial time function hc : {0, 1}∗ → {0, 1} is a
hard core predicate of f if (f(x), hc(x)) ≈ (f(x), b) where x← {0, 1}n, b← {0, 1} ♦

Now one might ask whether there exists a hard core predicate for every One-Way Func-
tion(OWF)? There is a good news and a bad news to this question. At first, let us reveal
the bad news. There is no single function hc which is a hard core predicate for every OWF.
Because if f is a OWF then f ′(x) = (f(x), hc(x)) is also a OWF but hc is not a hard core
predicate for f ′. But the good news is that given any one-way function f we can construct
a new one-way function g and a hard-core predicate for g.

Now we present an alternative deifinition of hard core predicate which is easier to work
with.

Definition 2 [Unpredictability] A polynomial time function hc : {0, 1}∗ → {0, 1} is a
hard core predicate of f if ∀ PPT “predictor” P

Pr[P (f(x)) = hc(x) : x← {0, 1}n] ≤ 1/2 + negl(n)

♦
This definition means that an adversary can’t do much better in predicting hc(x) than

simply guessing a random bit.

Lemma 1 Indistinguishability implies Unpredictability.

Proof: We prove that if hc does not satisfy unpredictability than it does not satisfy indis-
tinguisahability.

Assume ∃ PPT “predictor” P such that Pr[P (f(x)) = hc(x)] ≥ 1/2 + ε(n). Define a
distinguisher D via

D(y, b) = {If P (y) = b, output 1, else output 0}
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Then

Pr[D(f(x), hc(x)) = 1]− Pr[D(f(x), b) = 1] ≥ 1

2
+ ε(n)− 1

2
= ε(n)

where all probabilities are over x← {0, 1}n, b← {0, 1}.
So if we can predict with non-negligible advantage ε , then we can distinguish by non-

negligible advantage ε.

Lemma 2 Unpredictability implies indistinguishability.

Proof: We prove that if hc does not satisfy indistinguisahability than it does not satisfy
unpredictability. Suppose ∃ PPT “distinguisher” D and ε(n) 6= negl(n) such that

|Pr[D(f(x), hc(x)) = 1]− Pr[D(f(x), b) = 1]| ≥ ε(n)

where x← {0, 1}n, b← {0, 1}.
Without loss of generality, we can remove the absolute value of the above equation by

potentially flipping the output bit of D to ensure that the difference is positive. In slightly
more detail, we know that |Pr[D(f(x), hc(x)) = 1] − Pr[D(f(x), b) = 1]| > 1/nc for some
constant c and infintiely many n. Therefore either Pr[D(f(x), hc(x)) = 1]−Pr[D(f(x), b) =
1] > 1/nc for infinitely many n or Pr[D(f(x), hc(x)) = 0] − Pr[D(f(x), b) = 0] > 1/nc for
infinitely many n. In the latter case, we can flip the output bit of D.

Define

P (y) = { Choose b← {0, 1} : If D(y, b) = 1, output b, else b }

First note that:

Pr[D(f(x), b) = 1] = Pr[D(f(x), b) = 1, b = hc(x)] + Pr[D(f(x), b) = 1, b = hc(x)]

=
1

2
(Pr[D(f(x), hc(x)) = 1] + Pr[D(f(x), hc(x) = 1])

⇒Pr[D(f(x), hc(x) = 1] = 2Pr[D(f(x), b) = 1]− Pr[D(f(x), hc(x)) = 1]

This implies

Pr[P (f(x)) = hc(x)] = Pr[D(f(x), hc(x)) = 1, b = hc(x)] + Pr[D(f(x), hc(x)) = 0, b = hc(x)]

=
1

2
(Pr[D(f(x), hc(x) = 1] + Pr[D(f(x), hc(x) = 0])

=
1

2
(Pr[D(f(x), hc(x) = 1] + 1− Pr[D(f(x), hc(x) = 1])

=
1

2
+

1

2
(Pr[D(f(x), hc(x) = 1]− Pr[D(f(x), hc(x) = 1])

=
1

2
+

1

2
(2Pr[D(f(x), b) = 1]− Pr[D(f(x), hc(x)) = 1])

=
1

2
+ ε(n)

where the second to last line follows by substituting for Pr[D(f(x), hc(x) = 1] using the
previous derivation.
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3 Goldreich Levin Theorem

Theorem 1 If f is a one way function, then g(x, r) = (f(x), r) is also a one way function
and hc(x, r) = 〈x, r〉 =

∑
(xi · ri)( mod 2) is a hard core predicate of g.

As an alternate interpretation of the Goldreich-Levin theorem, we can think of hc(x, r) =
〈x, r〉 as a randomized hard core predicate for any one way function f , meaning that

(f(x), r, hc(x, r)) ≈ (f(x), r, b)

where x, r ← {0, 1}n, b← {0, 1}.
We will finish the poof of the Goldreich-Levin theorem in the next lecture, but let’s start

to build some intuition for the proof and see what the main components are.
We do a proof by contradiction. Suppose hc is not a hard core predicate of g, then

we wish to show that f is not a one-way function. By the unpredictability definition of
hard-core predictates we know that ∃ PPT P, ε(n) 6= negl(n) such that
Pr[P (f(x), r) = 〈x, r〉] ≥ 1

2 + ε(n)
We want to show that we can invert f . We first explore some simple cases that make the
proof much easier.

Simple Case 1 : Suppose Pr[P (f(x), r) = 〈x, r〉] = 1
The Algorithm to invert OWF f is:-
A(y):

for i = 1, ..., n
x̃i = P (y, ei)

Output x = (x̃1, ....x̃n)

Here ei denotes the i’th standard basis vector (all 0 except for 1 in i’th position). The
algorithm is correct since we are guaranteed that x̃i = P (y, ei) = 〈x, ei〉 = xi.

Simple Case 2 : Suppose ∀x (ie, not only for any random x), Pr[P (f(x), r) = 〈x, r〉] ≥
3
4 + 1

p(n) where the probability is over r ← {0, 1}n. In this case, we have no guarantees

on P (y, ei) giving us correct answers since ei is not random. Here is a smarter strategy.

Call b1 = P (y, r), b2 = P (y, r + ei) where r ← {0, 1}n.
Output xi = b2 − b1
Note: r and r + ei are individually random but not independent.
If P (y, r), P (y, r + ei) are both “correct” then: xi = b2 − b1 = 〈x, r + ei〉 − 〈x, r〉 =
〈x, ei〉 is also correct. Moreover:

Pr[Both b1 and b2 are correct]
= 1 - Pr[At least one of them is wrong]
= 1− (14 −

1
p(n) + 1

4 −
1

p(n) ) = 1
2 + 2

p(n)
We have to run the above procedure many times for the i-th bit and take the majority
vote. If there are enough votes, majority is correct with high probability (Chernoff
bound).
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There are two main differences between Simple Case 2 and what we need to prove.
Most importantly, our predictor is only correct with probability 1/2 + ε(n) rather than
3/4 + 1/p(n). Secondly, in our case the probability is over a random x, r whereas in simple
case 2 it’s only over random r for worst-case x. We show how to handle the second problem.
Essentially, this is an “averaging argument” which shows that if some probability is high
over random x, r then for many x the probability is high over a random r.

Claim 1 ∀n ∈ N, ∃Gn ⊆ {0, 1}n of size |Gn| ≥ ε(n)
2 .2n ( ε(n)

2 is the density ) such that
∀x ∈ Gn :

Prr←{0,1}n [P (f(x), r) = 〈x, r〉] ≥ 1

2
+
ε(n)

2
(1)

Proof: Define Gn = {x : equation 1 holds }. Then

1

2
+
ε(n)

2
≤ Prx,r[P (f(x), r) = 〈x, r〉]

= Prx,r[P (f(x), r) = 〈x, r〉, x ∈ Gn] + Prx,r[P (f(x), r) = 〈x, r〉, x /∈ Gn]

≤ Prx[x ∈ Gn] +
1

2
+
ε(n)

2

⇒Prx[x ∈ Gn] ≥ ε(n)

2

⇒|Gn| ≥
ε(n)

2
· 2n

So there are many good values x for which P (f(x), r) answers correctly on most r. In
the next lecture we will show that this is sufficient to invert f(x). This is essentially a
decoding problem which we abstract in the next claim (to be proved next time):

Claim 2 For any δ(n) = 1
poly(n) there exists a PPT algorithm DecO and a polynomial

p(n) = poly(n) such that for all n ∈ N,∀x ∈ {0, 1}n:
If Pr[O(r) = 〈x, r〉] ≥ 1

2 + δ(n)
then Pr[DecO(1n) = x] ≥ 1

p(n) .

(The notation DecO denotes that Dec has oracle access to O meaning that it can call O on
arbitrary values r.)

We will prove this claim and discuss a connection to coding theory next time.
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