
CS 7880 Graduate Cryptography October 1, 2015

Lecture 6: PRG with 1-bit stretch implies arbitrary stretch

Lecturer: Daniel Wichs Scribe: Andrew Cobb

1 Topic Covered

Creating a PRG in 3 steps:

• Creating a PRG with constant stretch from a PRG with stretch 1

• Creating a PRG with polynomial stretch from a PRG with stretch 1

• Creating a PRG with stretch 1 from a OWF

2 Increasing the stretch of a PRG

2.1 Previous Definitions

Definition 1 We define computational indistinguishability X ≈ Y between ensembles
X = {Xn}n∈N and Y = {Yn}n∈N as ∀ PPT D, ∃ ε(n) = negl(n) such that

|Pr[D(Xn) = 1]− Pr[D(Yn) = 1]| ≤ ε(n)

♦

Definition 2 A function G : {0, 1}∗ → {0, 1}∗ is a PRG with stretch `(n) if

G(Un) ≈ Un+`(n)

where Um denotes the uniform distribution over {0, 1}m. ♦

2.2 Increasing stretch from 1 to a constant

Theorem 1 If ∃ PRG G with 1-bit stretch, then ∀ `(n) = poly(n), ∃ PRG G` with `(n)-bit
stretch.

Proof:(constant `) Using the following construction, we define G`(x0) = (b1, b2, . . . b`, x`)

G G . . . G x`
x0 x1 x2 x`−1

b1 b2 b`

Or in psuedocode:

G`(x0) =

for i ∈ {1, . . . `}

(xi, bi) := G(xi−1)

output (b1, . . . b`, x`)

Lecture 6, Page 1

To prove this is a PRG, we need to show that if we could break G` then we could break G.

Recall:
Hybrid argument: If X ≈ Y and Y ≈ Z, then X ≈ Z.

We will define some hybrid, in-between distributions then show that every step of the
chain is computationally indistinguishable from the next. We define:

H0
n := G`(Un)

H i
n :=

b1, . . . bi ← {0, 1}
xi ← {0, 1}n
(bi+1, . . . b`, x`) := G`−i(xi)

H`
n := Un+`

We want to show that any two adjacent hybrids are indistinguishable. Here’s a
representation of the difference between two:

H i
n

G G . . . G x`
xi xi+1 xi+2 x`−1

b1 b2 bi bi+1 bi+2 b`. . .

H i+1
n

G . . . G x`
xi+1 xi+2 x`−1

b1 b2 bi bi+1 bi+2 b`. . .

Claim 1 ∀ i ∈ {0, 1, . . . `− 1}, H i ≈ H i+1

Idea: If we can distinguish between hybrids, we can distinguish between
(xi+1, bi+1) = G(xi) and (xi+1, bi+1) being uniformly random. This is the only difference
between Hybrids H i and H i+1.

Proof: We define a PPT function fi as

fi(xi+1, bi+1) =

b1, . . . bi ← {0, 1}n

for j ∈ {i+ 2, . . . `}
(xj , bj) := G(xj−1)

output (b1, . . . b`, x`)}

We note that the distribution of fi(Un+1) is related to H, in particular

fi(Un+1) ≡ H i+1
n and

fi(G(Un)) ≡ H i
n

Lecture 6, Page 2

Where “≡” means equal distributions.
Last time we claimed that if X ≈ Y and f is a PPT function then f(X) ≈ f(Y). By this
claim and assumption of security of G, we know H i ≈ H i+1. Now we know

H0 ≈ H1 ≈ · · · ≈ H`

and by the hybrid argument

G`(Un) ≡ H0 ≈ H` ≡ Un+`

Which proves G` is a PRG.

2.3 Increasing stretch from 1 to a polynomial

However, that proof only works for constant `. We now want to extend the proof to any
polynomial `(n). (Side note: we are only dealing with the cases where `(n) is computible
in polynomial time.) We use almost the exact same construction as last time, just
changing ` to `(n):

G`(x0) =

for i ∈ {1, . . . `(n)}

(xi, bi) := G(xi−1)

output (b1, . . . b`(n), x`(n))

The analysis is almost the same, but now our hybrids look like:

{H i
n}n∈N,i∈{0, ... `(n)−1}

Claim 2 If for all polynomials i(n) such that i(n) ∈ {0, . . . `(n)− 1} we have

{H i(n)
n }n∈N ≈ {H i(n)+1

n }n∈N

then
{H0

n}n∈N ≈ {H`(n)
n }n∈N

We need this claim because while we could use the hybrid argument for a known number
of ensembles, now the number of hybrid ensembles depends on n.

Proof: Let D be a PPT distinguisher between {H0
n}n∈N and {H`(n)

n }n∈N.∣∣∣Pr[D(H0
n) = 1]− Pr[D(H`(n)

n) = 1]
∣∣∣

=

∣∣∣∣∣∣
`(n)−1∑
i=0

Pr[D(H i
n) = 1]− Pr[D(H i+1

n) = 1]

∣∣∣∣∣∣
≤

`(n)−1∑
i=0

∣∣Pr[D(H i
n) = 1]− Pr[D(H i+1

n) = 1]
∣∣︸ ︷︷ ︸

δin

≤ `(n) ·
∣∣∣Pr[D(H i∗(n)

n) = 1]− Pr[D(H i∗(n)+1
n) = 1]

∣∣∣
Lecture 6, Page 3

Where i∗(n) = arg max
i∈{0, ... `(n)−1}

δin.

Essentially, we are bounding every term in the sum by the worst case term. Since by

assumption,
∣∣∣Pr[D(H

i∗(n)
n) = 1]− Pr[D(H

i∗(n)+1
n) = 1]

∣∣∣ is negligable, we can conclude

that `(n) · negl(n) is also negligable.

To prove {H i(n)
n }n∈N ≈ {H

i(n)+1
n }n∈N would be the same as proving H i ≈ H i+1 in the

fixed ` case (Claim 1), but there is an additional difficulty: i(n) may not be efficiently
computable.
There are at least two ways different ways we could deal with this:

1. Use the non-uniform model of computation, which equips a TM with some fixed
lookup value of n. This can also be viewed as a family of algorithms indexed by n.

2. Instead of changing our model of computation, we can make a stronger claim by
using a weaker assumption:

Claim 3 Let In be uniform over {0, . . . `(n− 1)}. If HIn ≈ HIn+1 then H0
n ≈ H

`(n)
n

Proof: (Similar to Claim 2).∣∣∣Pr[D(H0
n) = 1]− Pr[D(H`(n)

n) = 1]
∣∣∣

=

∣∣∣∣∣∣
`(n)−1∑
i=0

Pr[D(H i
n) = 1]− Pr[D(H i+1

n) = 1]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
`(n)−1∑
i=0

Pr[D(HIn
n) = 1 | In = i]− Pr[D(HIn+1) = 1 | In = i]

∣∣∣∣∣∣
= `(n) ·

∣∣∣∣∣∣
`(n)−1∑
i=0

Pr[D(HIn
n) = 1, In = i]− Pr[D(HIn+1) = 1, In = i]

∣∣∣∣∣∣
= `(n) ·

∣∣Pr[D(HIn
n) = 1]− Pr[D(HIn+1) = 1]

∣∣
= negl(n)

Now to finish the proof that G` is a PRG we need to show HIn ≈ HIn+1

We change our definition of fi to fIn

fIn(x, b) =

pick i← In

(xi+1, bi+1) := (x, b)

b1, . . . bIn ← {0, 1}n

for j ∈ {In + 2, . . . `}
(xj , bj) := G(xj−1)

output (b1, . . . b`, x`)}

Lecture 6, Page 4

The rest of the proof is identical to before. Using Claim 3, we know

G`(n)(Un) ≡ H0
n ≈ H`(n)

n ≡ Un+`(n)

Which shows G` is a PRG for any computible l(n) = poly(n).

3 Creating a PRG from a OWF

We’ve shown that PRG’s of larger stretch can be constructed from a PRG with 1-bit
stretch. Now we need to construct such a PRG from a OWF. It’s slightly suprising that this
can be done, since the requirement of uniformity doesn’t seem to be provided by a OWF.

Definition 3 A OWF f : {0, 1}∗ → {0, 1}∗ is a one way permutation (OWP) when both

• |f(x)| = |x| ∀ x

• ∀ x 6= x′, f(x) 6= f(x′)

♦
Note that this definition implies that f is one-to-one and onto.

Idea: We construct G = (f(x), hc(x)) for some hc : {0, 1}∗ → {0, 1}.
We want to exploit the fact that there is some information in x that is unknown and hard
to recover.
As a first attempt, would defining hc(x) = x[1] produce a good PRG? Unfortunately, this
won’t work for arbitrary OWP f . As a counterexample, let f ′ be a OWP, and
f(x) = (x[1], f ′(x[2 . . . n])). We can show that f ′(x) is a valid OWP, since a preimage of
f ′ would result in a preimage of f , but G(x) = (f(x), hc(x)) would always output equal
first and last bits, so G could be easily distinguished from Un, and wouldn’t be a PRG.

To be continued: finding a good hc(x). . .

Lecture 6, Page 5

