Lecture 6: PRG with 1-bit stretch implies arbitrary stretch
Lecturer: Daniel Wichs
Scribe: Andrew Cobb

1 Topic Covered

Creating a PRG in 3 steps:

- Creating a PRG with constant stretch from a PRG with stretch 1
- Creating a PRG with polynomial stretch from a PRG with stretch 1
- Creating a PRG with stretch 1 from a OWF

2 Increasing the stretch of a PRG

2.1 Previous Definitions

Definition 1 We define computational indistinguishability $X \approx Y$ between ensembles $X=\left\{X_{n}\right\}_{n \in \mathbb{N}}$ and $Y=\left\{Y_{n}\right\}_{n \in \mathbb{N}}$ as \forall PPT $D, \exists \varepsilon(n)=\operatorname{negl}(n)$ such that

$$
\left|\operatorname{Pr}\left[D\left(X_{n}\right)=1\right]-\operatorname{Pr}\left[D\left(Y_{n}\right)=1\right]\right| \leq \varepsilon(n)
$$

Definition 2 A function $G:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a PRG with stretch $\ell(n)$ if

$$
G\left(U_{n}\right) \approx U_{n+\ell(n)}
$$

where U_{m} denotes the uniform distribution over $\{0,1\}^{m}$.

2.2 Increasing stretch from 1 to a constant

Theorem 1 If \exists PRG G with 1 -bit stretch, then $\forall \ell(n)=\operatorname{poly}(n), \exists \operatorname{PRG} G^{\ell}$ with $\ell(n)$-bit stretch.

Proof: (constant ℓ) Using the following construction, we define $G^{\ell}\left(x_{0}\right)=\left(b_{1}, b_{2}, \ldots b_{\ell}, x_{\ell}\right)$

Or in psuedocode:

$$
G^{\ell}\left(x_{0}\right)=\left\{\begin{array}{l}
\text { for } i \in\{1, \ldots \ell\} \\
\quad\left(x_{i}, b_{i}\right):=G\left(x_{i-1}\right) \\
\text { output }\left(b_{1}, \ldots b_{\ell}, x_{\ell}\right)
\end{array}\right.
$$

Lecture 6, Page 1

To prove this is a PRG, we need to show that if we could break G^{ℓ} then we could break G.
Recall:
Hybrid argument: If $X \approx Y$ and $Y \approx Z$, then $X \approx Z$.
We will define some hybrid, in-between distributions then show that every step of the chain is computationally indistinguishable from the next. We define:

$$
\begin{aligned}
& \frac{H_{n}^{0}:=}{} G^{\ell}\left(U_{n}\right) \\
& b_{1}, \ldots b_{i} \leftarrow\{0,1\} \\
& H_{n}^{i}:= x_{i} \leftarrow\{0,1\}^{n} \\
&\left(b_{i+1}, \ldots b_{\ell}, x_{\ell}\right):=G^{\ell-i}\left(x_{i}\right) \\
& \hline H_{n}^{\ell}:= U_{n+\ell}
\end{aligned}
$$

We want to show that any two adjacent hybrids are indistinguishable. Here's a representation of the difference between two:

Claim $1 \forall i \in\{0,1, \ldots \ell-1\}, H^{i} \approx H^{i+1}$
Idea: If we can distinguish between hybrids, we can distinguish between $\left(x_{i+1}, b_{i+1}\right)=G\left(x_{i}\right)$ and $\left(x_{i+1}, b_{i+1}\right)$ being uniformly random. This is the only difference between Hybrids H^{i} and H^{i+1}.

Proof: We define a PPT function f_{i} as

$$
f_{i}\left(x_{i+1}, b_{i+1}\right)=\left\{\begin{array}{c}
b_{1}, \ldots b_{i} \leftarrow\{0,1\}^{n} \\
\text { for } j \in\{i+2, \ldots \ell\} \\
\left(x_{j}, b_{j}\right):=G\left(x_{j-1}\right) \\
\text { output } \left.\left(b_{1}, \ldots b_{\ell}, x_{\ell}\right)\right\}
\end{array}\right.
$$

We note that the distribution of $f_{i}\left(U_{n+1}\right)$ is related to H, in particular

$$
\begin{aligned}
f_{i}\left(U_{n+1}\right) & \equiv H_{n}^{i+1} \quad \text { and } \\
f_{i}\left(G\left(U_{n}\right)\right) & \equiv H_{n}^{i}
\end{aligned}
$$

Lecture 6, Page 2

Where " \equiv " means equal distributions.
Last time we claimed that if $X \approx Y$ and f is a PPT function then $f(X) \approx f(Y)$. By this claim and assumption of security of G, we know $H^{i} \approx H^{i+1}$. Now we know

$$
H^{0} \approx H^{1} \approx \cdots \approx H^{\ell}
$$

and by the hybrid argument

$$
G^{\ell}\left(U_{n}\right) \equiv H^{0} \approx H^{\ell} \equiv U_{n+\ell}
$$

Which proves G^{ℓ} is a PRG.

2.3 Increasing stretch from 1 to a polynomial

However, that proof only works for constant ℓ. We now want to extend the proof to any polynomial $\ell(n)$. (Side note: we are only dealing with the cases where $\ell(n)$ is computible in polynomial time.) We use almost the exact same construction as last time, just changing ℓ to $\ell(n)$:

$$
G^{\ell}\left(x_{0}\right)=\left\{\begin{array}{l}
\text { for } i \in\{1, \ldots \ell(n)\} \\
\quad\left(x_{i}, b_{i}\right):=G\left(x_{i-1}\right) \\
\text { output }\left(b_{1}, \ldots b_{\ell(n)}, x_{\ell(n)}\right)
\end{array}\right.
$$

The analysis is almost the same, but now our hybrids look like:

$$
\left\{H_{n}^{i}\right\}_{n \in \mathbb{N}, i \in\{0, \ldots \ell(n)-1\}}
$$

Claim 2 If for all polynomials $i(n)$ such that $i(n) \in\{0, \ldots \ell(n)-1\}$ we have

$$
\left\{H_{n}^{i(n)}\right\}_{n \in \mathbb{N}} \approx\left\{H_{n}^{i(n)+1}\right\}_{n \in \mathbb{N}}
$$

then

$$
\left\{H_{n}^{0}\right\}_{n \in \mathbb{N}} \approx\left\{H_{n}^{\ell(n)}\right\}_{n \in \mathbb{N}}
$$

We need this claim because while we could use the hybrid argument for a known number of ensembles, now the number of hybrid ensembles depends on n.

Proof: Let D be a PPT distinguisher between $\left\{H_{n}^{0}\right\}_{n \in \mathbb{N}}$ and $\left\{H_{n}^{\ell(n)}\right\}_{n \in \mathbb{N}}$.

$$
\begin{aligned}
& \left|\operatorname{Pr}\left[D\left(H_{n}^{0}\right)=1\right]-\operatorname{Pr}\left[D\left(H_{n}^{\ell(n)}\right)=1\right]\right| \\
= & \left|\sum_{i=0}^{\ell(n)-1} \operatorname{Pr}\left[D\left(H_{n}^{i}\right)=1\right]-\operatorname{Pr}\left[D\left(H_{n}^{i+1}\right)=1\right]\right| \\
\leq & \sum_{i=0}^{\ell(n)-1} \underbrace{\left|\operatorname{Pr}\left[D\left(H_{n}^{i}\right)=1\right]-\operatorname{Pr}\left[D\left(H_{n}^{i+1}\right)=1\right]\right|}_{\delta_{n}^{i}} \\
\leq & \ell(n) \cdot\left|\operatorname{Pr}\left[D\left(H_{n}^{i^{*}(n)}\right)=1\right]-\operatorname{Pr}\left[D\left(H_{n}^{i^{*}(n)+1}\right)=1\right]\right|
\end{aligned}
$$

Lecture 6, Page 3

Where $i^{*}(n)=\underset{i \in\{0, \ldots \ell(n)-1\}}{\arg \max } \delta_{n}^{i}$.
Essentially, we are bounding every term in the sum by the worst case term. Since by assumption, $\left|\operatorname{Pr}\left[D\left(H_{n}^{i^{*}(n)}\right)=1\right]-\operatorname{Pr}\left[D\left(H_{n}^{i^{*}(n)+1}\right)=1\right]\right|$ is negligable, we can conclude that $\ell(n) \cdot \operatorname{negl}(n)$ is also negligable.

To prove $\left\{H_{n}^{i(n)}\right\}_{n \in \mathbb{N}} \approx\left\{H_{n}^{i(n)+1}\right\}_{n \in \mathbb{N}}$ would be the same as proving $H^{i} \approx H^{i+1}$ in the fixed ℓ case (Claim 1), but there is an additional difficulty: $i(n)$ may not be efficiently computable.
There are at least two ways different ways we could deal with this:

1. Use the non-uniform model of computation, which equips a TM with some fixed lookup value of n. This can also be viewed as a family of algorithms indexed by n.
2. Instead of changing our model of computation, we can make a stronger claim by using a weaker assumption:

Claim 3 Let I_{n} be uniform over $\{0, \ldots \ell(n-1)\}$. If $H^{I_{n}} \approx H^{I_{n}+1}$ then $H_{n}^{0} \approx H_{n}^{\ell(n)}$
Proof: (Similar to Claim 2).

$$
\begin{aligned}
& \left|\operatorname{Pr}\left[D\left(H_{n}^{0}\right)=1\right]-\operatorname{Pr}\left[D\left(H_{n}^{\ell(n)}\right)=1\right]\right| \\
= & \left|\sum_{i=0}^{\ell(n)-1} \operatorname{Pr}\left[D\left(H_{n}^{i}\right)=1\right]-\operatorname{Pr}\left[D\left(H_{n}^{i+1}\right)=1\right]\right| \\
= & \left|\sum_{i=0}^{\ell(n)-1} \operatorname{Pr}\left[D\left(H_{n}^{I_{n}}\right)=1 \mid I_{n}=i\right]-\operatorname{Pr}\left[D\left(H^{I_{n}+1}\right)=1 \mid I_{n}=i\right]\right| \\
= & \ell(n) \cdot\left|\sum_{i=0}^{\ell(n)-1} \operatorname{Pr}\left[D\left(H_{n}^{I_{n}}\right)=1, I_{n}=i\right]-\operatorname{Pr}\left[D\left(H^{I_{n}+1}\right)=1, I_{n}=i\right]\right| \\
= & \ell(n) \cdot\left|\operatorname{Pr}\left[D\left(H_{n}^{I_{n}}\right)=1\right]-\operatorname{Pr}\left[D\left(H^{I_{n}+1}\right)=1\right]\right| \\
= & \operatorname{neg} \mid(n)
\end{aligned}
$$

Now to finish the proof that G^{ℓ} is a PRG we need to show $H^{I_{n}} \approx H^{I_{n}+1}$ We change our definition of f_{i} to $f_{I_{n}}$

$$
f_{I_{n}}(x, b)=\left\{\begin{array}{l}
\text { pick } i \leftarrow I_{n} \\
\left(x_{i+1}, b_{i+1}\right):=(x, b) \\
b_{1}, \ldots b_{I_{n}} \leftarrow\{0,1\}^{n} \\
\text { for } j \in\left\{I_{n}+2, \ldots \ell\right\} \\
\quad\left(x_{j}, b_{j}\right):=G\left(x_{j-1}\right) \\
\text { output } \left.\left(b_{1}, \ldots b_{\ell}, x_{\ell}\right)\right\}
\end{array}\right.
$$

Lecture 6, Page 4

The rest of the proof is identical to before. Using Claim 3, we know

$$
G^{\ell(n)}\left(U_{n}\right) \equiv H_{n}^{0} \approx H_{n}^{\ell(n)} \equiv U_{n+\ell(n)}
$$

Which shows G^{ℓ} is a PRG for any computible $l(n)=\operatorname{poly}(n)$.

3 Creating a PRG from a OWF

We've shown that PRG's of larger stretch can be constructed from a PRG with 1-bit stretch. Now we need to construct such a PRG from a OWF. It's slightly suprising that this can be done, since the requirement of uniformity doesn't seem to be provided by a OWF.
Definition 3 A OWF $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a one way permutation (OWP) when both

- $|f(x)|=|x| \quad \forall x$
- $\forall x \neq x^{\prime}, f(x) \neq f\left(x^{\prime}\right)$

Note that this definition implies that f is one-to-one and onto.
Idea: We construct $G=(f(x)$, hc $(x))$ for some hc : $\{0,1\}^{*} \rightarrow\{0,1\}$.
We want to exploit the fact that there is some information in x that is unknown and hard to recover.
As a first attempt, would defining $\mathrm{hc}(x)=x[1]$ produce a good PRG? Unfortunately, this won't work for arbitrary OWP f. As a counterexample, let f^{\prime} be a OWP, and $f(x)=\left(x[1], f^{\prime}(x[2 \ldots n])\right)$. We can show that $f^{\prime}(x)$ is a valid OWP, since a preimage of f^{\prime} would result in a preimage of f, but $G(x)=(f(x), h c(x))$ would always output equal first and last bits, so G could be easily distinguished from U_{n}, and wouldn't be a PRG.
To be continued: finding a good $\mathrm{hc}(x) \ldots$

