
CS 7880 Graduate Cryptography November 17, 2015

Lecture 18: Identification schemes

Lecturer: Daniel Wichs Scribe: Hridam Basu

1 Topic Covered

• Identification schemes

2 Identification schemes

We are going to construct identification schemes and see how to build digital signatures
from them. Identification schemes helps to convince others about the identity of a particular
person without others(read adversaries) being able to convince others about the identity
of that particular person. For Eg:- I want to log in to many websites using the same
password. But a secure identification scheme should prevent other websites from loging in
to a particular website using my identity.
An identification scheme consists of three parts :-

• (pk, sk) ← Gen(1n) where n is a security parameter, pk is the public key and sk is
the secret key.

• Protocol consisting of a Prover P and a Verifier V
P(pk,sk) V(pk)

←−−−−−−
−−−−−−→
←−−−−−−

↓ 0/1
The protocol is randomised and V outputs either 0 or 1.

• Correctness:

Pr[Output(P (pk, sk)↔ V (pk)) = 1] = 1

(pk, sk)← Gen(1n)
The verifier should accept if we run the protocol correctly.

Honest Verifier Security:

• denote V iew(P (pk, sk)↔ V (pk)
The V iew denotes everything the verifier sees when the protocol is happening. It is
also sometimes referred to as the transcript of the protocol from the point of view of
the verifier.
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• IDGameA(1n) where A is the adversary and n is the security parameter

• (pk, sk) ← Gen(1n) where n is a security parameter, pk is the public key and sk is
the secret key.

• A gets pk, tri ← V iew(P (pk, sk)↔ V (pk)) i=1, . . . , t , t=poly(n)

• A interacts with V (pk), output whatever V outputs

• Construction
If we have a digital signature scheme, then it is simple to construct an identification
scheme from it. The verifier V picks a random string and asks the prover P to sign it
and then when that signature is transmitted to V , he can verify it.
Construction from Discrete Log:

P (pk, sk) V (pk)
a−−−−−−−−−−−−−−−−−−−−−→
c←−−−−−−−−−−−−−−−−−−−−− c← Dpk

z−−−−−−−−−−−−−−−−−−−−−→ V (pk, (a, c, z)) = 1

We want to look at restricted protocols called Σ-protocols.
(G, g, q)← GroupGen(1n) where G is a group with prime order q and g is the gener-
ator of the group
Assumption: Discrete Log is hard for this group G.

P (pk, sk) V (pk)
a = gr(r ← Zq)−−−−−−−−−−−→

c←−−−−−−−−−− c← Zq

z = r + c · x−−−−−−−−−−→ V er(pk, (a, c, z)) = 1

V er(pk, (a, c, z)) : Check a · hc = gz

a · hc = gr · gxc = gr+c·x = gz

• Claim 1:
∃ PPT Sim,
(a,c,z)← Sim(pk) such that ∀(pk, sk)← Gen(1n) where Sim is basically a Simulator
who simulates the transcripts himself without knowing the secret key.
V iew(P (pk, sk)↔ V (pk) ≡ Sim(pk)
Apparently, this is good for the security of the system because even if the adversary
A sees many transcripts, he cannot do much because he could have generated the
transcripts himself. He cannot learn anything more than the public key.

Proof: If the Sim samples c, z ← Zq and sets a = gz

hc then the distribution of a given
c,z is exactly the same as in View. In other words, the distribution of (a,c,z) is same
in both the cases. The simulator basically generates the transcripts by running the
protocol in a different order.
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• Claim 2:
∃ PPT Ext : sk = Ext(pk, a, (c, z), (c′, z′)) such that
whenever c6= c’ and V er(pk, (a, c, z)) = V er(pk, (a, c′, z′)) = 1, Then x’=x.
Ext is a deterministic algorithm.

Proof: V er(pk, (a, c, z)) = V er(pk, (a, c′, z′)) = 1
⇐⇒ a.hc = gz

⇐⇒ a.hc
′

= gz
′

⇒ hc−c
′

= gz−z
′

⇒ h = g
z−z′
c−c′ [c - c’ 6= 0 ]

Ext outputs x′ = z−z′
c−c′

The above two claims are somewhat contradictory. The 1st claim says that an adversary
is able to create as many transcripts as he wants without knowing the secret key. On the
other hand, the second claim says that if the adversary can verify two different transcripts
with the same a, then he can break the system as he can recover the secret key.

Theorem 1 Construction is a secure Identification scheme under Discrete Logarithm as-
sumption.

A

pk

{tri}i=1,...,t

a

c

z

B : tri =
Sim(.)

h = gx

x

Proof: Assume ∃ PPT A s.t. Pr[IDGameA(n) = 1] = ε(n) 6= negl(n)
So A breaks the identification scheme and let us assume ∃ B that is a reduction that solves
Discrete Logarithm. Here, a technique called rewinding is followed: B takes a snapshot
upto the point it sees a. Then it rewinds and gives 2 c’s and hopes that V er = 1
Let w be the total state of A after it sends a.
Let pw = Pr[W = w] W ← random variable that ends up in the state w
δw = Pr[IDGame = 1|W = w]
Pr[A succeeds] =

∑
w pw · δw = ε(n)
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Pr[B succeeds] =
∑
w

pw · δw2 − 1

q
[∵ Pr[c = c′] =

1

q
]

= E[δw
2]− 1

q

≥ E[δw]2 − 1

q
[∵ By Jensen’s Inequality]

= ε2(n)− 1

q
6= negl(n) [∵ non-negl(n) - negl(n) = non-negl(n)]

So, when A breaks the identification scheme, we are able to solve the Discrete Loga-
rithm Problem with non-negligible probability, thus contradicting our assumption. Thus
the construction is secure under the Discrete Logarithm Assumption.

This Identication based scheme is practically not useful because it cannot prevent man-
in-the-middle attacks.
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