
CS 7880 Graduate Cryptography October 22nd, 2015

Lecture 12: Crypto in Cyclic Groups, DL, CDH, DDH Assumptions

Lecturer: Daniel Wichs Scribe: Schuyler Rosefield

1 Topic Covered

• Primes

• Groups, Subgroups, Cyclic Groups

• Crypto in Cyclic Groups

• Discrete Logarithm and Diffie-Hellman Assumptions

2 Primes

Fact 1 Distribution of Primes
There are infinitely many of them, and we can define the function

π(x) := number of primes ≤ x

By the Prime Number Theorem we can bound from below π with

π(x) ≥ x

3 log2(x)
≈ x

log(x)
(1)

Following (1) we can approximate the probability that a specific number is a prime with

Pr[x is prime : x ∈ {1, . . . 2n − 1}] ≥ 1

3n

Theorem 2 Miller-Rabin ‘80, AKS ‘02
We can test if a number is prime in polynomial time. With MR this process is proba-

balistic, and refined in AKS to be deterministic.

Corollary 1 Sampling Prime Numbers
We can efficiently sample a random n-bit prime in poly(n) time.
The algorithm is roughly as follows:

1. sample x← {0, . . . 2n − 1}

2. test if x is prime, else goto 1

This has probability of success as

Pr[algorithm does not output after t iterations] ≤ (1− 1

3n
)t)

If t = 3n2 this probability is ≤ (1/e)n.

Lecture 12, Page 1

3 Groups, Subgroups, Cyclic Groups

Theorem 3 Lagrange’s Theorem. If H subgroup G, then |H| | |G|.
Let g ∈ G, 〈g〉 := {g0 = 1, g, g2, . . . gq−1} where gq−1 is the last distinct element, and

gq = 1. Then we say that q is the order of the element g, which is the same as the order of
the sub-group 〈g〉. By Lagrange’s theorem q||G|.

If h ∈ G then hm ≡ hm mod q where q = |G|.

Corollary 2 Modular Exponentiation
∀n ∈ N, a ∈ Z∗n

1. ax = ax mod ϕ(n) mod n

2. aϕ(n) = 1 mod n

3. if n = p is prime, ap−1 = 1 mod p

Fact 4 Generators
Z∗p with p prime is a cyclic group ⇒ ∃g ∈ Z∗p is a generator.
i.e. 〈g〉 = Z∗p = {g0, g1, . . . gp−2}

4 Crypto in Cyclic Groups

We’re going to abstractly build cryptosystems over some cyclig group G, without specifying
exactly what the representation of the group is. This allows us to later instantiate these
cryptosystems in a variety of different ways. We abstractly assume we have some algorithm
(G, g, q)← Groupgen(1n)

1. G is a description of a cyclic group. Multiplication g · h and inverses g−1 can be
computed in polynomial time in n.

2. g is a generator of G: 〈g〉 = G

3. q = |G| is the order of G.

E.g. One instantiation is the following.

1. Let G = Z∗p where p is a random n-bit prime

2. q = p− 1 (notably is even)

3. g is a generator of G (we know it exists, and it turns out we can even sample it
efficiently).

Note, if G is a cyclic group of order q then (G, ·) ' (Zq,+) are isomorphic. If g is
a generator of G then the map π : Zq → G given by π(x) = gx is an isomorphism.
Therefore, we can think of these as just different representations of the same mathematical
object. However, for cryptography, we’ll rely on the fact that some operations are easy
given the representation (Zq,+) but (hopefully) hard given the representation (G, ·).

We summarize three different “computational hardness assumptions” that we will use
to build cryptosystems. They are listed in order from weakest to strongest.

Lecture 12, Page 2

5 Discrete Logarithm and Diffie-Hellman Assumptions

Definition 1 Discrete Lograrithm (DL) Problem
Given gx mod p, calculating x is hard
Formally ∀ PPT A :

Pr[A(G, g, q, gx) = x : (G, g, q)← Groupgen(1n), x← Zq] = negl(n)

Definition 2 Computation Diffie-Hellman (CDH)
Given gx, gy, hard to compute gxy

Formally ∀ PPT A :

Pr[A(G, q, g, gx, gy) = gxy : G← Groupgen(1n), x, y ← Zq] = negl(n)

Definition 3 Decision Diffie-Hellman (DDH)
Given gx and gy, the value gxy is indistinguishable from random.
Formally:

(g, gx, gy, gxy) ≈ (g, gx, gy, h) :

where (G, g, q)← Groupgen(1n), x, y ← Zq, h← G.
Equivalently, expanding the definition of computational indsitinguihsability ≈, we re-

quire that for all PPT A:

|Pr[A(G, g, q, gx, gy, gxy) = 1]− Pr[A(G, g, q, gx, gy, h) = 1]| ≤ negl(n)

where the probabilities are over (G, g, q)← Groupgen(1n), x, y ← Zq, h← G.

Diffie-Hellman Key Agreement. We now show a protocol that allows Alice and Bob
to agree on a shared secret key k via a public discussion. In other words Alice and Bob
exchange messages and, even if an eavesdropper Eve sees all of the messages exchanged
between them, she does not learn anything about the shared key k.

We first create public parameters (G, g, q) ← Groupgen(1n). We can think of this as
being done by a “trusted party” and everyone in the future uses these parameters, or they
can be chosen by (say) Alice in the first round of the protocol.

The rest of algorithm is as follows:

1. Alice generates x← Zq, sends hA = gx to Bob

2. Bob generates y ← Zq, sends hB = gy to Alice

3. Alice generates k = hxB = gxy and Bob generates k = hyA = gxy

The security of the protocol follows immediately from the DDH assumption, which tells
us that even if Eve sees g, hA, hB the shared key k looks uniformly random to her.

Lecture 12, Page 3

DDH does not hold in Z∗p. Although the group Z∗p is a good candidate for the discrete
log and the CDH assumptions, it is not a good candidate for the DDH assumption.

Let the quadratic residues mod p be defined as follows:

QRp = {h : h = f2forf ∈ G} = {h : gz, zeven}

We can test if h ∈ QRp by checking h(p−1)/2 = 1. If h = g2z
′

for some z′, then
h(p−1)/2 = g(p−1)z

′
= 1. On the other hand if h = g2z

′+1 for some z′, then h(p−1)/2 =
g(p−1)z

′+(p−1)/2 = g(p−1)/2 6= 1.
Furthermore gxy ∈ QRp if gx ∈ QRp or gy ∈ QRp since xy is even if x or y is even.

Therefore gxy ∈ QRp with probability 3/4. However a random h ← G is in QRp with
probability only 1/2. This lets us distinguish gxy from random.

DDH in a subgroup of Z∗p. A Sophie-Germain prime is a number p = 2q + 1 such that
p, q are both prime. We can set G = QRp. This is a cyclic group is of prime order q and
every element g ∈ G with g 6= 1 is a generator of G. The DDH assumption is conjectured
to hold in this group.

Algorithms for DL. There are sub-exponential algorithms to solve DL (and therefore

aslo CDH, DDH) in time 2Õ(n1/3) in G = Z∗p (and therefore also if G is a subgroup of Z∗p)
where p ≤ 2n.

A generic algorithm can break DL in any group G in O(2n/2) time (baby step, giant
step) when |G| ≤ 2n:

1. Given generator g, calculate the giant steps {g, g
√
q, g2

√
q, . . . g(

√
q−1)√q}

2. For h = gx, calculate the baby steps {h, h · g, h · g2, . . . h · g
√
q}

3. At some point we must get a collision between one of the baby steps and giant step
so that h · gj = gi

√
q where we know j, i. At this point we can solve gi

√
q−j = h.

There is also a polynomial time algorithm that solves the discrete logarithm problem
using a quantum computer.

Lecture 12, Page 4

