
CS 7880 Graduate Cryptography October 20, 2015

Lecture 11: Hash Functions, Merkle-Damgaard, Random Oracle

Lecturer: Daniel Wichs Scribe: Tanay Mehta

1 Topics Covered

• Review Collision-Resistant Hash Functions

• Merkle-Damgaard Theorem

• Random Oracle Model

• Number Theory and Algebra

2 Collision-Resistant Hash Functions

Recall the following definition from last time.

A family of functions Hs : {0, 1}l(n) → {0, 1}n, where l(n) > n and s ∈ {0, 1}n are collison-
resistant hash functions iff

• Hs(x) can be computed in polynomial time.

• Pr[(x 6= x′) ∧ (Hs(x) = Hs(x
′)) : s← {0, 1}n, (x, x′)← A(s)] ≤ negl(n)

Note that the seed s is public to all parties; there is no secret key. Given access to all this
information, an adversary should still be unable to find collisions.

Collision-resistant hash functions seem to be harder to construct than the other crypto-
graphic primitives we’ve seen so far and we don’t know how to build them from one-way
functions. In fact, there is a result that shows that a collision-resistant hash function cannot
be built from one-way functions in a blackbox manner.

Ideally, we want a high amount of compressability from collision-resistant hash functions
(i.e. l(n) >> n). This is similar to how pseudorandom generators where we wanted a high
amount of stretch (number fo extra pseudorandom bits we get). The following theorem
shows that if we can compress by even 1 bit then we can compress by any number of bits.

Theorem 1 (Merkle-Damgaard) If there exists a family of collision-resistant hash func-
tion Hs with l(n) = n + 1 bit input, then there exists a collision-resistant hash function H ′s
with any polynomial l′(n) bit input.

Lecture 11, Page 1

Proof: We prove this by giving an explicit construction for H ′s. Let (b1, . . . , bl′(n)) be the
input to H ′s. Then, H ′s can be found by chaining together l′(n) instances of Hs in the
following manner.

Hs Hs

l′(n) times
Hs

0n

b1 b2

y1

bl′(n)

yl′(n)−1 yl′(n)

Each Hs takes n + 1 bit input. We initially feed an n-bit 0 string and the first bit of our
input b1 into one instance of Hs. Then, we take it’s output y1, which is of n bits, and feed
it into another Hs instance along with the second bit of our input b2. We do this process
l′(n) times until we have fed all bits of our input. We take the output of from this instance
yl′(n) as the value of our hash.

We will now prove security for this construction. Assume that there is a PPT attacker
A(s) on the collision resistance of H ′s. In other words, with some probability ε(n), the
attacker A(s) outputs

x = (b1, . . . , bl′(n)) 6= x′ = (b′1, . . . , b
′
l′(n))

such that H ′s(x) = H ′s(x
′). We claim that whenever the above happens, we can use it to

find a collision on Hs. Running backwards on two instances of the above construction (one
with input x and the other with x′), there must be a largest index j such that (bj , yj−1) 6=
(b′j , y

′
j−1). Since this is the larges such j, we know that Hs(bj , yj−1) = yj = Hs(b

′
j , y
′
j−1).

Therefore this allows us to efficiently find a collision on Hs whenever A finds a collision on
H ′s. Since the former can only happen with negligible probability, this shows that ε(n) is
negligible and therefore H ′s is collision resistant.

Note that the above allows us to get a collision-resistant hash function for an arbitrarily
large l(n) bit input. But still, the input size l(n) needs to be fixed. Suppose we want to
create a collision-resistant hash function Hs : {0, 1}∗ → {0, 1}n with variable input length.
Then, the proof above doesn’t work anymore because x and x′ can be of different length.
It turns out that there are relatively simple ways to fix this and get a hash function with
variable input length as well.

2.1 Merkle Trees

Let us consider a different construction, Merkle trees. We start with a hash function
Hs : {0, 1}2n → {0, 1}n. Now consider the following complete binary tree of depth h
(illustrated for h = 3):

Lecture 11, Page 2

y

x1 x2 x3 x4 x5 x6 x7 x8

For n-bit blocks x1, . . . , x2h , we define the host (parent) of two nodes to have value
Hs(a, b) where a and b are the values of the host’s two children. Then, the root node has

value y = H ′s(x1, . . . , x2h) where H ′s : {0, 1}2h → {0, 1}n.

The proof of security is similar to the one for the Merkle-Damgaard construction. If an
adversary comes up with a collision on the function H ′s, then we can use it to find a collision
on Hs.

Merkle trees have a couple of useful properties. First, Merkle trees are more efficient
to compute when working in parallel processing system than the Merkle-Damgaard con-
struction. This is because all of the hashes at any level of the tree can be computed in
parallel.

Second, let’s say Alice hashes some long string x and sends the output y = Hs(x) to
Bob. Since the hash function is collision resistant, this commits Alice to a single string x
which she can send as the pre-image of y. Let’s say that Bob later wants to know the i’th
block of x where we think of x = (x1, . . . , xl) as having l = 2h blocks with xi ∈ {0, 1}n.
Bob wants to be sure that there is only a single value of xi that Alice can legitimately
send. One way to do this would be for Alice to send the entire string x, and for Bob to
very that Hs(x) = y matches the hash he has. But this requires a lot of communication if
Bob only wants xi and doesn’t care about the rest of x. The nice thing about the Merkle
tree construction is that we can do this with much less communication. Instead of Alice
sending the entire string x, she will only send the i’th block xi along with the hash outputs
corresponding to all the sibling nodes along the path from the root of the tree to the i’th
bloc. For example, when i = 3, the transmitted values are illustrated by the nodes in bold
below. Bob can the use the transmitted values to re-compute the value associated with the
root of the tree and verify that this matches y.

Lecture 11, Page 3

y

x1 x2 x3 x4 x5 x6 x7 x8

This has applications to memory checking. If you have a hash of a large database
consisting of l records with n bits each (think of l as very large and n as reasonably small) and
want to download one small record, you can use this method to check that the downloaded
record is correct. The communication is only n log l bits.

3 Random Oracle Model

Hash functions are used in many different ways in cryptography beyond only for “collision
resistance”. There is a belief that practical hash functions have many security properties
which aren’t captured by collision resistance alone.

To capture this intuition, we consider an idealized model of hash functions called the
random oracle model. In this model, we think of a hash function as a completely random
but public function RO(·). Anybody can query this function at arbitrary inputs x and get
back RO(x). This means that when we construct a scheme in the random oracle model,
we allow the scheme to make such random oracle queries. However, we must also allow the
attacker to make such queries as well when attacking the scheme.

Defining the Random Oracle Model. More formally, the random oracle model is a
model where all parties (e.g. algorithms, adversaries) have oracle access to a (uniformly)
random function

RO : {0, 1}∗ → {0, 1}n

(we can be flexible about the output length, but for now let’s just insist on n bits.)
We can think of this as whenever a fresh value x is queried, the oracle chooses a random

output y. The next time that x is queried, the oracle gives back the same y as previously.
Note that if two different parties query RO on the same input x, they will receive the same
output.

We say that a cryptographic scheme (e.g., PRG, PRF,encryption, etc.) is secure in the
random oracle model if it satisfies the standard syntax, correctness and security properties
but augmented so that the scheme as well as the attacker in the security definition have
oracle access to RO. We give some examples below.

Lecture 11, Page 4

Constructions in the Random Oracle Model. Let us consider how to build various
cryptographic primitives in this model.

• Collision-resistant hash functions: We can simply define our CRHF to be

H(x) := RO(x)

We claim that

Pr[ARO(·) → (x, x′) : x 6= x′,RO(x) = RO(x′)] ≤ q2

2n
= negl(n)

where q is the number of queries that A makes to RO. We can prove this claim
unconditionally without assuming that P 6= NP, and allowing A to run in any amount
of time. We will only make a restriction on the number of queries A can make.

Proof: Note that the probability that the i-th and j-th queries collide is 1
2n . Then by

the union bound, we have that probability of any collision is q2

2n . This is also known
as the Birthday Paradox. Without loss of generality, assume that xi 6= xj and A calls
RO on xi.

• Pseudorandom generators: We define our PRG to be

GRO(x) = RO(x||1),RO(x||2)

where x||1 and x||2 are x concatenated with bit-representations of 1 and 2 respectively.
Note that each output of each RO is n bits yielding a total of 2n bits. The only way
to distinguish between this PRG and the uniform distribution is by calling RO on x.
The probability of successfully guess x is 1

2|x|
.

• Pseudorandom functions: We initially may think to just define our functions as

Fk(x) = RO(x)

However, this doesn’t work because the adversary A has access to RO(x). There is
no secret key used. Instead, consider

Fk(x) = RO(k||x)

The security of this definition follows from considering

|Pr[ARO(·),Fk(−)(1n) = 1]− Pr[ARO(·),R(·)(1n) = 1]| ≤ negl(n)

where R is a random function independent of RO.

Lecture 11, Page 5

Discussion. As we have seen, it is fairly easy to build cryptographic primitives in this
model. The model is mathematically precise and we can give formal definitions and proofs
of security in this model. But what does it tell us about the real world, where there is no
random oracle?

The hope is that we take a construction which is secure in the random oracle model,
and replace the random oracle RO(·) with some real cryptographic hash function Hs(·)
(where the seed is chosen randomly but given to the adversary) then the schemes will still
be secure. This is not a well defined security property for the hash function Hs(·). We are
simply hoping that Hs is “as good” as a random oracle even though we know that Hs is
not a truly random function (it has a short description and can be evaluated in polynomial
time). We do not have a theorem saying that if a scheme is secure in the random oracle
model than it is secure when we replace the random oracle with a real hash function Hs.
It’s therefore only a heuristic way of arguing about security. It seems to work in real life and
allows us to construct very simple schemes. But we know that it does not work in general
and can lead to incorrect incorrect conclusions. In fact, we know that there are (contrived)
schemes which are secure in the random oracle model, but are always insecure when you
replace the random oracle by any potential hash function Hs(·).

On the other hand, we can think of the random oracle model as defining the limits of
what we can even hope to construct using (only) tools like one-way function or collision-
resistant hash functions. If there is a primitive that we can’t even construct in the Random
Oracle model, then there is no hope to construct it (in a black-box way) from any of the
primitives we’ve studied so far. An in fact, it turns out that there is such a primitive:
public-key encryption. A beautiful result by Impagliazzo-Rudich shows that we can’t build
public key encryption in the random oracle model (without making some other hardness
assumptions). Intuitively, public-key encryption requires hard problems that have more
structure which the random oracle does not provide. Luckily, we will see (candidates) for
such hard problems in number theory and algebra.

4 Number Theory and Algebra

We now move onto a new part of the course. We’re going to build the primitives we’ve
been studying (OWFs, PRGs, PRFs) using hardness assumptions from number theory and
algebra. These constructions are never used in practice since they’re far less efficient than
the “ad-hoc” constructions out there. We will also go beyond the primitives we’ve seen
so far and show how to build more advanced cryptosystems, most importantly public-key
encryption. These are the schemes used in practice since there aren’t more efficient “ad-hoc”
alternatives.

We state some facts of number theory and algebra.

Modular arithmetic: Consider the group over the set Zn (integers modulo n). The
canonical representatives of Zn = {0, . . . , n− 1}.

Along with the operation +, (Zn,+) forms a group. This means we satisfy

1. Identity: There exists 0 ∈ Zn such that for all a ∈ Zn we have that a + 0 = a.

Lecture 11, Page 6

2. Add: For all a, b ∈ Zn, a + b ∈ Zn.

3. Inverse: For all a ∈ Zn, there exists −a ∈ Zn such that a + (−a) = 0.

Note that (Zn, ·) does not form a group because we lack multiplicative inverses (i.e. we
cannot divide every element by another to get 1.

Fact: a 6= 0 has inverse in (Zn, ·) if gcd(a, n) = 1.

Proof: This is equivalent to saying there exists x, y such that xa + yn = 1. From this, we
have

xa ≡ 1 (mod n) ⇒ x ≡ a−1 (mod n)

Consider Z∗n = {a ∈ {1, . . . , n}} such that gcd(a, n) = 1. This forms a group under multi-
plication since all elements have inverses.

What is the size of this group? Define the Euler totient function ϕ(n) = |Z∗n|.

If p is prime, then Z∗p = Zp\{0} = {1, . . . , p− 1}. Therefore, ϕ(p) = p− 1.

Let us now look at the computational complexity of various algebraic operations.

• +, · are polynomial time. + is, in fact, linear.

• (−)−1 (mod n) computing the inverse. Existence of the inverse can be found using
Euclid’s algorithm. The actual inverse can be found using the extended Euclidean
algorithm. Both of these run in polynomial time.

• ab exponentiation cannot be computed in polynomial time because the output is
exponential in the input length.

• ab (mod n) can be computed in polynomial time. Write b in binary.

ab ≡ a
∑

bi·2i (mod n)

≡
∏
i

abi·2
i

≡
∏

i,bi=1

a2
i

(mod n)

The final value can be computed by repeated squaring i times.

Lecture 11, Page 7

