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1 Université Claude Bernard Lyon 1
2 École Normale Supérieure de Lyon

3 LIP (U. Lyon, CNRS, ENS Lyon, INRIA, UCBL),
46 Allée d’Italie, 69364 Lyon Cedex 07, France.

4 Technicolor, 975 Avenue des Champs Blancs, 35510 Cesson-Sévigné, France

Abstract. Group signatures are cryptographic primitives where users can anonymously sign messages in
the name of a population they belong to. Gordon et al. (Asiacrypt 2010) suggested the first realization
of group signatures based on lattice assumptions in the random oracle model. A significant drawback of
their scheme is its linear signature size in the cardinality N of the group. A recent extension proposed by
Camenisch et al. (SCN 2012) suffers from the same overhead. In this paper, we describe the first lattice-
based group signature schemes where the signature and public key sizes are essentially logarithmic in N
(for any fixed security level). Our basic construction only satisfies a relaxed definition of anonymity (just
like the Gordon et al. system) but readily extends into a fully anonymous group signature (i.e., that resists
adversaries equipped with a signature opening oracle). We prove the security of our schemes in the random
oracle model under the SIS and LWE assumptions.
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1 Introduction

Group signatures are a core cryptographic primitive that paradoxically combines the properties of authenticity
and anonymity. They are useful in many real-life applications including trusted computing platforms, auction
protocols or privacy-protecting mechanisms for users in public transportation.

Parties involved in such a system are a special entity, called the group manager, and group members. The
manager holds a master secret key, generates a system-wide public key, and administers the group members, by
providing to each of them an individual secret key that will allow them to anonymously sign on behalf of the
group. In case of dispute, the manager (or a separate authority) is able to determine the identity of a signer
via an opening operation. This fundamental primitive has been extensively studied, from both theoretical and
practical perspectives: It has been enriched with many useful properties, and it has been implemented in the
contexts of trusted computing (using privacy-preserving attestation [14]) and of traffic management (e.g., the
Vehicle Safety Communications project of the U.S. Dept. of Transportation [31]).

Group signatures were originally proposed by Chaum and van Heyst [20] and made scalable by Ateniese et
al. in [3]. Proper security models were introduced in [5] and [7, 32] (for dynamic groups), whereas more intricate
and redundant properties were considered hitherto. The model of Bellare et al. [5] requires two main security
properties called full anonymity and full traceability. The former notion means that signatures do not leak
the identities of their originators, whereas the latter implies that no collusion of malicious users can produce
a valid signature that cannot be traced to one of them. Bellare et al. [5] proved that trapdoor permutations
suffice to design group signatures, but their theoretical construction was mostly a proof of concept. Nevertheless,
their methodology has been adapted in practical constructions: Essentially, a group member signs a message
by verifiably encrypting a valid membership certificate delivered by the authority, while hiding its identity.
While numerous schemes (e.g., [3, 15, 17, 9]) rely on the random oracle model (ROM), others are proved secure
in the standard model (e.g., [5, 7, 11, 12, 27]). Except theoretical constructions [5, 7], all of these rely on the
Groth-Sahai methodology to design non-interactive proof systems for specific languages involving elements in



bilinear groups [29]. This powerful tool led to the design of elegant compact group signatures [12, 27] whose
security relies on pairing-related assumptions. The resulting signatures typically consist in a constant number
of elements of a group admitting a secure and efficient bilinear map.
Lattices and Group Signatures. Lattices are emerging as a promising alternative to traditional number-
theoretic tools like bilinear maps. They lead to asymptotically faster solutions, thanks to the algorithmic sim-
plicity of the involved operations and to the high cost of the best known attacks. Moreover, lattice-based schemes
often enjoy strong security guarantees, thanks to worst-case/average-case connections between lattice problems,
and to the conjectured resistance to quantum computers.

While numerous works have been (successfully) harnessing the power of lattices for constructing digital
signatures (see [37, 25, 19, 34, 10, 35] and references therein), only two works addressed the problem of efficiently
realizing lattice-based group signatures. The main difficulty to overcome is arguably the scarcity of efficient and
expressive non-interactive proof systems for statements involving lattices, in particular for statements on the
witnesses of the hard average-case lattice problems. This state of affairs contrasts with the situation in bilinear
groups, where powerful non-interactive proof systems are available [28, 29].

In 2010, Gordon et al. [26] described the first group signature based on lattice assumptions using the Gentry
et al. signature scheme [25] as membership certificate, an adaptation of Regev’s encryption scheme [44] to
encrypt it, and a zero-knowledge proof technique due to Micciancio and Vadhan [40]. While elegant in its design
principle, their scheme suffers from signatures and public keys of sizes linear in the number of group members,
making it utterly inefficient in comparison with constructions based on bilinear maps [9] or the strong RSA
assumption [3]. Quite recently, Camenisch et al. [18] proposed anonymous attribute token systems, which can be
seen as generalizations of group signatures. One of their schemes improves upon [26] in that the group public key
has constant size5 and the anonymity property is achieved in a stronger model where the adversary is granted
access to a signature opening oracle. Unfortunately, all the constructions of [18] inherit the linear signature size
of the Gordon et al. construction. Thus far, it remained an open problem to break the linear-size barrier. This
is an important challenge considering that, as advocated by Bellare et al. [5], one should expect practical group
signatures not to entail more than poly-logarithmic complexities in the group sizes.

Our Contributions. We describe the first lattice-based group signatures featuring sub-linear signature sizes.
If t and N denote the security parameter and the maximal group size, the public keys and signatures are
Õ(t2 · logN) bit long. Notice that no group signature scheme can provide signatures containing o(logN) bits

(such signatures would be impossible to open), so that the main improvement potential lies in the Õ(t2) factor.
These first asymptotically efficient (in t and logN) lattice-based group signatures are a first step towards a
practical alternative to the pairing-based counterparts. The security proofs hold in the ROM (as for [26, 18]),
under the Learning With Error (LWE) and Short Integer Solution (SIS) assumptions. While our basic system
only provides anonymity in a relaxed model (like [26]) where the adversary has no signature opening oracle,
we show how to upgrade it into a fully anonymous group signature, in the anonymity model of Bellare et al.
[5]. This is achieved at a minimal cost in that the signature length is only increased by a constant factor. In
contrast, Camenisch et al. [18, Se. 5.2] achieve full anonymity at the expense of inflating their basic signatures
by a factor proportional to the security parameter.

Construction Overview. Our construction is inspired by the general paradigm from [5] consisting in en-
crypting a membership certificate under the authority’s public key while providing a non-interactive proof that
the ciphertext encrypts a valid certificate belonging to some group member. Nevertheless, our scheme differs
from this paradigm in the sense that it is not the certificate itself which is encrypted. Instead, a temporary
certificate, produced at each signature generation, is derived from the initial one and encrypted, with a proof
of its validity.

We also depart from the approach of [26] at the very core of the design, i.e., when it comes to provide evidence
that the encrypted certificate corresponds to a legitimate group member. Specifically, Gordon et al. [26] hide

5 This can also be achieved with [26] by replacing the public key by a hash thereof, and appending the key to the
signature.
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their certificate, which is a GPV signature [25, Se. 6], within a set of N − 1 (encrypted) GPV pseudo-signatures
that satisfy the same verification equation without being short vectors. Here, to avoid the O(N) factor in the
signature size, we take a different approach which is reminiscent of the Boyen-Waters group signature [11]. Each
group member is assigned a unique `-bit identifier id = id[1] . . . id[`] ∈ {0, 1}`, where ` = dlog2Ne. Its certificate
is an extension of a Boyen signature [10] consisting in a full short basis of a certain lattice (instead of a single
vector), which allows the signer to generate temporary certificates composed of a pair x1,x2 ∈ Zm of discrete
Gaussian vectors such that

xT1 ·A + xT2 · (A0 +
∑

1≤i≤`

id[i] ·Ai) = 0 mod q. (1)

Here, q is a small bit length integer and A,A0, . . . ,A` ∈ Zm×nq are part of the group public key. Our
choice of Boyen’s signature [10] as membership certificate is justified by it being one of the most efficient known
lattice-based signatures proven secure in the standard model, and enjoying a simple verification procedure
corresponding to a relation for which we can design a proof of knowledge. A signature proven secure in the
standard model allows us to obtain an easy-to-prove relation that does not involve a random oracle. As noted
for example in [3, 16, 17], signature schemes outside the ROM make it easier to prove knowledge of a valid
message-signature pair in the design of privacy-preserving protocols.

We encrypt x2 ∈ Zm as in [26], using a variant of the dual-Regev encryption scheme [25, Se. 7]: the resulting
ciphertext is c0 = B0 · s + x2, where B0 ∈ Zm×nq is a public matrix and s is uniform in Znq . Then, for each
i ∈ [1, `], we also compute a proper dual-Regev encryption ci of id[i] · x2 and generate a non-interactive OR
proof that ci encrypts either the same vector as c0 or the 0 vector.

It remains to prove that the encrypted vectors x2 are part of a signature satisfying (1) without giving
away the id[i]’s. To this end, we choose the signing matrices Ai orthogonally to the encrypting matrices Bi,
as suggested in [26]. Contrarily to the case of [26], the latter technique does not by itself suffice to guarantee
the well-formedness of the ci’s. Indeed, we also need to prove properties about the noise vectors used in the
dual-Regev ciphertexts {ci}1≤i≤`. This is achieved using a modification of Lyubashevsky’s protocol [33, 35] to
prove knowledge of a solution to the Inhomogeneous Short Integer Solution problem (ISIS). This modification
leads to a Σ-protocol which is zero-knowledge when the transcript is conditioned on the protocol not aborting.
As the challenge space of this Σ-protocol is binary, we lowered the abort probability so that we can efficiently
apply the Fiat-Shamir heuristic to a parallel repetition of the basic protocol. In the traceability proof, the
existence of a witness extractor will guarantee that a successful forger will either yield a forgery for Boyen’s
signature or a short non-zero vector in the kernel of one of the matrices {Ai}1≤i≤`. In either case, the forger
allows the simulator to solve a SIS instance.

In the fully anonymous variant of our scheme, the difficulty is to find a way to open adversarially-chosen
signatures. This is achieved by implicitly using a “chosen-ciphertext-secure” variant of the signature encryption
technique of Gordon et al. [26]. While Camenisch et al. [18] proceed in a similar way using Peikert’s technique
[41], we use a much more economical method borrowed from the Agrawal et al. [1] identity-based cryptosystem.
In our basic system, each ci is of the form Bi ·s+p ·ei+id[i] ·x2, where p is an upper bound on x2’s coordinates,
and can be decrypted using a short basis Si such that Si ·Bi = 0 mod q. Our fully anonymous system replaces
each Bi by a matrix Bi,VK that depends on the verification key VK of a one-time signature. In the proof of
full anonymity, the reduction will be able to compute a trapdoor for all matrices Bi,VK, except for one specific
verification key VK? that will be used in the challenge phase. This will provide the reduction with a backdoor
allowing it to open all adversarially-generated signatures.

Open problems. The schemes we proposed should be viewed as proofs of concept, since instantiating them
with practical parameters would most likely lead to large keys and signature sizes. It is an interesting task to
replace the SIS and LWE problems by their ring variants [36, 42, 38], to attempt to save linear factors in the
security parameter t. The main hurdle in that direction seems to be the design of appropriate zero-knowledge
proofs of knowledge for the LWE and ISIS relations (see Section 2.2).

As opposed to many pairing-based constructions, the security of our scheme is only proven in the random
oracle model: We rely on the Fiat-Shamir heuristic to remove the interaction in the interactive proof systems.
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This is because very few lattice problems are known to belong to NIZK. The problems considered in the
sole work on this topic [43] seem ill-fitted to devise group signatures. As a consequence, the security proofs
of all known lattice-based group signatures are conducted in the random oracle model. Recently suggested
multi-linear maps [24] seem like a possible direction towards solving this problem. However, currently known
instantiations [24, 21] rely on assumptions that seem stronger than LWE or SIS.

2 Background and Definitions

We first recall standard notations. All vectors will be denoted in bold lower-case letters, whereas bold upper-
case letters will be used for matrices. If b and c are two vectors of compatible dimensions and base rings, then
their inner product will be denoted by 〈b, c〉. Further, if b ∈ Rn, its euclidean norm will be denoted by ‖b‖.
This notation is extended to any matrix B ∈ Rm×n with columns (bi)i≤n by ‖B‖ = maxi≤n ‖bi‖. If B is full

column-rank, we let B̃ denote the Gram-Schmidt orthogonalisation of B.
If D1 and D2 are two distributions over the same countable support S, then their statistical distance is

defined as ∆(D1, D2) = 1
2

∑
x∈S |D1(x) − D2(x)|. A function f(n) is said negligible if f(n) = n−ω(1). Finally,

the acronym PPT stands for probabilistic polynomial-time.

2.1 Lattices

A (full-rank) lattice L is the set of all integer linear combinations of some linearly independent basis vec-
tors (bi)i≤n belonging to some Rn. For a lattice L and a real σ > 0, we define the Gaussian distribution of
support L and parameter σ by DL,σ[b] ∼ exp(−π‖b‖2/σ2), for all b in L. We will extensively use the fact that
samples from DL,σ are short with overwhelming probability.

Lemma 1 ([4, Le. 1.5]). For any lattice L ⊆ Rn and σ > 0, we have Prb←↩DL,σ [‖b‖ ≤
√
nσ] ≥ 1− 2−Ω(n).

As shown by Gentry et al. [25], Gaussian distributions with lattice support can be sampled from efficiently,
given a sufficiently short basis of the lattice.

Lemma 2 ([13, Le. 2.3]). There exists a PPT algorithm GPVSample that takes as inputs a basis B of a

lattice L ⊆ Zn and a rational σ ≥ ‖B̃‖ ·Ω(
√

log n), and outputs vectors b ∈ L with distribution DL,σ.

Cash et al. [19] showed how to use GPVSample to randomize the basis of a given lattice. The following
statement is obtained by using [13, Le. 2.3] in the proof of [19].

Lemma 3 (Adapted from [19, Le. 3.3]). There exists a PPT algorithm RandBasis that takes as inputs a

basis B of a lattice L ⊆ Zn and a rational σ ≥ ‖B̃‖·Ω(
√

log n), and outputs a basis C of L satisfying ‖C̃‖ ≤
√
nσ

with probability ≥ 1− 2−Ω(n). Further, the distribution of C is independent of the input basis B.

Let m ≥ n ≥ 1 and q ≥ 2. For a matrix A ∈ Zm×nq , we define the lattice Λ⊥q (A) = {x ∈ Zm : xT ·A =

0 mod q}. We will use an algorithm that jointly samples a uniform A and a short basis of Λ⊥q (A).

Lemma 4 ([2, Th. 3.2]). There exists a PPT algorithm TrapGen that takes as inputs 1n, 1m and an integer q ≥
2 with m ≥ Ω(n log q), and outputs a matrix A ∈ Zm×nq and a basis TA of Λ⊥q (A) such that A is within statistical

distance 2−Ω(n) to U(Zm×nq ), and ‖T̃A‖ ≤ O(
√
n log q).

Lemma 4 is often combined with the sampler from Lemma 2. Micciancio and Peikert [39] recently proposed
a more efficient approach for this combined task, which should be preferred in practice but, for the sake of
simplicity, we present our schemes using TrapGen. Lemma 4 was later extended by Gordon et al. [26] so that the
columns of A lie within a prescribed linear vector subspace of Znq (for q prime). For the security proof of our
fully anonymous scheme, we will use an extension where the columns of the sampled A lie within a prescribed
affine subspace of Znq . A proof is given in Appendix B.
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Lemma 5. There exists a PPT algorithm SuperSamp that takes as inputs matrices B ∈ Zm×nq and C ∈ Zn×nq

such that the rows of B span Znq , m ≥ n ≥ 1, and q ≥ 2 prime such that m ≥ Ω(n log q). It outputs A ∈ Zm×nq

and a basis TA of Λ⊥q (A) such that A is within statistical distance 2−Ω(n) to U(Zm×nq ) conditioned on BT ·A =

C, and ‖T̃A‖ ≤ O(
√
mn log q logm).

Finally, we also make use of an algorithm that extends a trapdoor for A ∈ Zm×nq to a trapdoor of any B ∈
Zm′×n
q whose top m× n submatrix is A.

Lemma 6 ([19, Le. 3.2]). There exists a PPT algorithm ExtBasis that takes as inputs a matrix B ∈ Zm′×n
q

whose first m < m′ rows span Znq , and a basis TA of Λ⊥q (A) where A is the top m × n submatrix of B, and

outputs a basis TB of Λ⊥q (B) with ‖T̃B‖ ≤ ‖T̃A‖.

For the sake of simplicity, we will assume that when the parameter conditions are satisfied, the distributions
of the outputs of TrapGen and SuperSamp are exactly those they are meant to approximate, and the probabilistic
norm bounds of Lemmas 1 and 3 always hold.

2.2 Computational Problems

The security of our schemes provably relies (in the ROM) on the assumption that both algorithmic problems
below are hard, i.e., cannot be solved in polynomial time with non-negligible probability and non-negligible
advantage, respectively.

Definition 1. Let m, q, β be functions of a parameter n. The Short Integer Solution problem SISm,q,β is as
follows: Given A←↩ U(Zm×nq ), find x ∈ Λ⊥q (A) with 0 < ‖x‖ ≤ β.

Definition 2. Let q, α be functions of a parameter n. For s ∈ Znq (a secret), the distribution Aq,α,s over Znq ×Zq
is obtained by sampling a←↩ U(Znq ) and (a noise) e←↩ DZ,αq, and returning (a, 〈a, s〉+ e). The Learning With
Errors problem LWEq,α is as follows: For s←↩ U(Znq ), distinguish between arbitrarily many independent samples
from U(Znq × Zq) and the same number of independent samples from Aq,α,s.

If q ≥
√
nβ and m,β ≤ poly(n), then standard worst-case lattice problems with approximation factors γ =

Õ(β
√
n) reduce to SISm,q,β (see, e.g., [25, Se. 9]). Similarly, if αq = Ω(

√
n), then standard worst-case lattice

problems with approximation factors γ = O(α/n) quantumly reduce to LWEq,α (see [44], and also [41, 13] for
partial dequantizations). Note that we use the discrete noise variant of LWE from [26].

We will make use of a non-interactive zero-knowledge proof of knowledge (NIZPoK) protocol, which can be
rather directly derived from [33, 35], for the following relation corresponding to an inhomogenous variant of the
SIS relation:

RISIS =
{

(A,y, β; x) ∈ Zm×nq × Znq ×Q× Zm : xT ·A = yT ∧ ‖x‖ ≤ β
}
.

The protocol, detailed in Section 2.3 below, is derived from the parallel repetition of a Σ-protocol with binary
challenges. We call ProveISIS and VerifyISIS the PPT algorithms run by the Prover and the Verifier when the scheme
is rendered non-interactive using the Fiat-Shamir heuristic (i.e., the challenge is implemented using the ran-
dom oracle H(·)). Algorithm ProveISIS takes (A,y, β; x) as input, and generates a transcript (Comm,Chall,Resp).
Algorithm VerifyISIS takes (A,y, β) and such a transcript as inputs, and returns 0 or 1. The scheme has complete-
ness error 2−Ω(n): if ProveISIS is given as input an element of RISIS, then given as input the output of ProveISIS,
VerifyISIS replies 1 with probability ≥ 1 − 2−Ω(n) (over the randomness of ProveISIS). Also, there exists a PPT
algorithm SimulateISIS that, by reprogramming the random oracle H(·), takes (A,y, β) as input and generates a
transcript (Comm,Chall,Resp) whose distribution is within statistical distance 2−Ω(n) of the genuine transcript
distribution. Finally, there also exists a PPT algorithm ExtractISIS that given access to a time T algorithm A
that generates transcripts accepted by VerifyISIS with probability ε, produces, in time Poly(T, 1/ε) a vector x′

such that (A,y,O(β ·m · n); x′) ∈ RISIS.
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We will also need a NIZKPoK protocol for the following language:

RLWE =
{

(A,b, α; s) ∈ Zm×nq × Zmq ×Q× Znq : ‖b−A · s‖ ≤ αq
√
m
}
.

As noted in [35], we may multiply b by a parity check matrix G ∈ Z(m−n)×m
q of A and prove the existence of

small e ∈ Zm such that eT ·GT = bT ·GT . This may be done with the above NIZKPoK protocol for RISIS. We
call ProveLWE, VerifyLWE, SimulateLWE and ExtractLWE the obtained PPT algorithms.

2.3 Proof of Knowledge of an ISIS Solution

In [33], Lyubashevsky described an identification scheme whose security relies on the hardness of the SIS problem.
Given a public vector y ∈ Znq and a matrix A ∈ Zm×nq , the prover holds a short secret x and generates an

interactive witness indistinguishable proof of knowledge of a short vector x′ ∈ Zm such that x′T ·A = yT mod q.
A variant was later proposed in [35], which enjoys the property of being zero-knowledge (when the distribution
of the transcript is conditioned on the prover not aborting). We present an adaptation of [35, Fig. 1] (still
enjoying the same zero-knowledgedness property): the secret is a single vector, the challenges are binary (which
we use for the extraction procedure), and we increase the standard deviation of the commited vector to lower
the rejection probability (we use a parallel repetition of the basic scheme, and want the probability that there
is a reject among all the parallel iterations to be sufficiently away from 1).

Assume the prover P wishes to prove knowledge of an x such that xT ·A = yT mod q and ‖x‖ ≤ β, where y
and A are public. The protocol takes place between the prover P and the verifier V and proceeds by the k-times
parallel repetition of a basic Σ-protocol with binary challenges. We set σ = Θ(β

√
mn) and ML as specified

by [35, Th. 4.6]. Thanks to our larger value of σ, we obtain (by adapting [35, Le. 4.5]) that ML is now 1−Ω(1/n).

1. The prover P generates a commitment Comm = (wi)i≤k where, for each i ≤ k, wi ∈ Znq is obtained by

sampling yi ←↩ DZm,σ and computing wT
i = yTi ·A mod q. The message Comm is sent to V .

2. The verifier V sends a challenge Chall←↩ {0, 1}k to P .

3. For i ≤ k, the prover P does the following.

a. Compute zi = yi + Chall[i] · x, where Chall[i] denotes the ith bit of Chall.

b. Set zi to ⊥ with probability min(1, exp(−π‖z‖2/σ2)
ML·exp(−π‖Chall[i]·x−z‖2/σ2) ).

Then P sends the response Resp = (zi)i≤k to V .

4. The verifier V checks the transcript (Comm,Chall,Resp) as follows:

a. For i ≤ k, set di = 1 if ‖zi‖ ≤ 2σ
√
m and zTi ·A = wT

i + Chall[i] · yT . Otherwise, set di = 0.

b. Return 1 (and accept the transcript) if and only if
∑
i≤k di ≥ 0.65k.

The protocol has completeness error 2−Ω(k). Further, by [35, Th. 4.6], the distribution of the transcript
conditioned on zi 6= ⊥ can be simulated efficiently. Note that if we implement the challenge phase with a
random oracle, we can compute the zi’s for increasing values of i, and repeat the whole procedure if zi = ⊥ for
some i. Thanks to our choice of σ, for any k ≤ O(n), the probability that zi = ⊥ for some i is ≤ c, for some
constant c < 1. Thanks to this random-oracle-enabled rejection, the simulator produces a distribution that is
within statistical distance 2−Ω(n) from the transcript distribution.

Finally, the modified protocol provides special soundness in that there is a simple extractor that takes as
inputs two valid transcripts (Comm,Chall,Resp), (Comm,Chall′,Resp′) with distinct challenges Chall 6= Chall′

and obtains a witness x′ such that x′T ·A = yT mod q and ‖x′‖ ≤ O(σ
√
m) ≤ O(βmn).
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2.4 Group Signatures

This section recalls the model of Bellare, Micciancio and Warinschi [5], which assumes static groups. A group
signature scheme GS consists of a tuple of four PPT algorithms (Keygen,Sign,Verify,Open) with the following
specifications:

– Keygen takes as inputs 1t and 1N , where t is the security parameter, and N is the maximum number of
group members. It returns a tuple (gpk, gmsk,gsk) where gpk is the group public key, gmsk is the group
manager secret key, and gsk is an N -dim vector of secret keys: gsk[j] is the signing key of the j-th user, for
j ∈ {0, . . . , N − 1}.

– Sign takes as inputs the group public key gpk, a signing key gsk[j] and a message M ∈ {0, 1}∗. Its output
is a signature Σ ∈ {0, 1}∗ on M .

– Verify is deterministic and takes as inputs the group public key gpk, a message M and a putative signature Σ
of M . It outputs either 0 or 1.

– Open is deterministic and takes as inputs the group public key gpk, the group manager secret key gmsk, a
message M and a valid group signature Σ w.r.t. gpk. It returns an index j ∈ {0, . . . , N − 1} or a special
symbol ⊥ in case of opening failure.

The group signature scheme must be correct, i.e., for all integers t and N , all (gpk, gmsk,gsk) obtained from
Keygen with (1t, 1N ) as input, all indexes j ∈ {0, . . . , N − 1} and M ∈ {0, 1}∗:

Verify(gpk,M, Sign(gpk, gsk[j],M)) = 1 and Open(gpk, gmsk,M, Sign(gpk, gsk[j],M)) = j,

with probability negligibly close to 1 over the internal randomness of Keygen and Sign.
Bellare et al. [5] gave a unified security model for group signatures in static groups. The two main security

requirements are traceability and anonymity. The former asks that no coalition of group members be able to
create a signature that cannot be traced to one of them. The latter implies that, even if all the private keys
are given to the adversary, signatures generated by two distinct group members should be computationally
indistinguishable.

Expanon-b
GS,A(t,N)

(gpk, gmsk,gsk)← Keygen(1t, 1N )
(st, j0, j1,M)← A(choose, gpk,gsk)
Σ? ← Sign(gpk, gsk[jb],M)
b′ ← A(guess, st, Σ?)
Return b′

Exptrace
GS,A(t,N)

(gpk, gmsk,gsk)← Keygen(1t, 1N )
st← (gmsk, gpk)
C ← ∅ ; K ← ε ; Cont← true

while (Cont = true) do
(Cont, st, j)← AGS.Sign(·,gsk[·],·)(choose, st,K)
if Cont = true then C ← C ∪ {j};
K ← gsk[j]

end if
end while;
(M?, Σ?)← AGS.Sign(·,gsk[·],·)(guess, st)
if Verify(gpk,M?, Σ?) = 0 then Return 0
if Open(gpk, gmsk,M?, Σ?) =⊥ then Return 1
if ∃j? ∈ {0, . . . , N − 1} such that

(Open(gpk, gmsk,M?, Σ?) = j?) ∧ (j? /∈ C)
∧ ((j?,M?) not queried by A)

then Return 1 else Return 0

Fig. 1. Random experiments for anonymity and full traceability
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Anonymity. Anonymity requires that, without the group manager’s secret key, an adversary cannot recognize
the identity of a user given its signature. More formally, the attacker, modeled as a two-stage adversary (choose
and guess), is engaged in the first random experiment depicted in Figure 1. The advantage of such an adversary
A against a group signature GS with N members is defined as

Advanon
GS,A(t,N) =

∣∣Pr[Expanon-1
GS,A (t,N) = 1]− Pr[Expanon-0

GS,A (t,N) = 1]
∣∣ .

In our first scheme, we consider a weak anonymity scenario in which the adversary is not allowed to query
an opening oracle. This relaxed model is precisely the one considered in [26], and was firstly introduced in [9].
Nonetheless, we provide in Section 5 a variant of our scheme enjoying chosen-ciphertext security. The adversary
is then granted an access to an opening oracle that can be called on any string except the challenge signature Σ?.

Definition 3 (Weak and full anonymity, [5, 9]). A group signature scheme GS is said to be weakly anony-
mous (resp. fully anonymous) if for all polynomial N(t) and all PPT adversaries A (resp. PPT adversaries A
with access to an opening oracle which cannot be queried for the challenge signature), AdvanonGS,A(t,N) is a neg-
ligible function in the security parameter t.

Full traceability. Full traceability ensures that all signatures, even those created by a coalition of users and the
group manager, pooling their secret keys together, can be traced to a member of the forging coalition. Once
again, the attacker is modeled as a two-stage adversary who is run within the second experiment described in
Figure 1. Its success probability against GS is defined as

SucctraceGS,A(t,N) = Pr[Exptrace
GS,A(t,N) = 1].

Definition 4 (Full traceability, [5]). A group signature scheme GS is said to be fully traceable if for all
polynomial N(t) and all PPT adversaries A, its success probability SucctraceGS,A(t,N) is negligible in the security
parameter n.

3 An Asymptotically Shorter Lattice-Based Group Signature

At a high level, our key generation is based on the variant of Boyen’s lattice signatures [10] described in [39,
Se. 6.2]: Boyen’s secret and verification keys respectively become our secret and public keys, whereas Boyen’s
message space is mapped to the users’ identity space. There are however several additional twists in Keygen.
First, each group member is given a full short basis of the public lattice associated to its identity, instead of a
single short lattice vector. The reason is that, for anonymity and unlinkability purposes, the user has to generate
each group signature using a fresh short lattice vector. Second, we sample our public key matrices (Ai)i≤`
orthogonally to publicly known matrices Bi, similarly to the group signature scheme from [26]. These Bi’s will
be used to publicly verify the validity of the signatures. They are sampled along with short trapdoor bases,
using algorithm SuperSamp, which become part of the group signature secret key. These trapdoor bases will be
used by the group authority to open signatures.

To anonymously sign M , the user samples a Boyen signature (x1,x2) with its identity as message, which is
a temporary certificate of its group membership. It does so using its full trapdoor matrix for the corresponding
lattice. The user then encrypts x2, in a fashion that resembles [26], using Regev’s dual encryption scheme
from [25, Se. 7.1] with the Bi’s as encryption public keys. Note that in all cases but one (c0 at Step 2),
the signature is not embedded in the encryption noise as in [26], but as proper plaintext. The rest of the
signing procedure consists in proving in zero-knowledge that these are valid ciphertexts and that the underlying
plaintexts indeed encode a Boyen signature under the group public key. These ZKPoKs are all based on the
interactive proof systems recalled in Sections 2.2 and 2.3. These was made non-interactive via the Fiat-Shamir
heuristic with random oracle H(·) taking values in {0, 1}t, with t = Θ(n). The message M is embedded in the
application of the Fiat-Shamir transform at Step 6 of the signing algorithm.
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The verification algorithm merely consists in verifying all proofs of knowledge concerning the Boyen signature
embedded in the plaintexts of the ciphertexts.

Finally, the group manager can open any signature by decrypting the ciphertexts (using the group manager
secret key) and then recovering the underlying Boyen signature within the plaintexts: this reveals which public
key matrices Ai have been considered by the signer, and therefore its identity.

The scheme depends on several functions m, q, p, α and σ of the security parameter n and the group
size N(=2`). They are set so that all algorithms can be implemented in polynomial time and are correct
(Theorem 1), and so that the security properties (Theorems 2 and 3) hold, in the ROM, under the SIS and
LWE hardness assumptions for parameters for which these problems enjoy reductions from standard worst-case
lattice problems with polynomial approximation factors. More precisely, we require that:

• parameter m is Ω(n log q),
• parameter σ is Ω(m3/2

√
`n log q logm) and ≤ nO(1),

• parameter p is Ω((αq + σ)m3/2n),
• parameter α is set so that α−1 ≥ Ω(pm3 logm) and ≤ nO(1),
• parameter q is prime and Ω(`+ α−1

√
n`) and ≤ nO(1).

For example, we may set m = Õ(n), σ = Õ(n2
√
`), p = Õ(n9/2

√
`) as well as α−1 = Õ(n15/2

√
`) and q =

Õ(`+ n8
√
`).

Keygen(1n, 1N ): Given a security parameter n > 0 and the desired number of group members N = 2` ∈ poly(n),
choose parameters q, m, p, α and σ as specified above and make them public. Choose a hash function
H : {0, 1}∗ → {0, 1}t, for some t = Θ(n), which will be modelled as a random oracle in the security proof.
Then, proceed as follows.

1. Run TrapGen(1n, 1m, q) to get A ∈ Zm×nq and a short basis TA of Λ⊥q (A).
2. For i = 0 to `, sample Ai ←↩ U(Zm×nq ) and compute (Bi,S

′
i)← SuperSamp(Ai, 0

n×n). Then, randomize

S′i as Si ← RandBasis(S′i, Ω(
√
mn log q logm)).6

3. For j = 0 to N − 1, let idj = idj [1] . . . idj [`] ∈ {0, 1}` be the binary representation of idj and define:

Aidj =

[
A

A0 +
∑`
i=1 idj [i]Ai

]
∈ Z2m×n

q .

Then, run T′idj ← ExtBasis(Aidj ,TA) to get a short delegated basis T′idj of Λ⊥q (Aidj ). Finally, run

Tidj
← RandBasis(T′idj , Ω(m

√
`n log q logm)).6 The j-th member’s private key is gsk[j] := Tidj .

4. The group manager’s private key is gmsk := {Si}`i=0 and the group public key is defined to be gpk :=(
A, {Ai,Bi}`i=0

)
. The algorithm outputs

(
gpk, gmsk, {gsk[j]}N−1j=0

)
.

Sign(gpk, gsk[j],M): To sign a message M ∈ {0, 1}∗ using the private key gsk[j] = Tidj , proceed as follows.

1. Run GPVSample(Tidj , σ) to get (xT1 |xT2 )T ∈ Λ⊥q (Aidj ) of norm ≤ σ
√

2m.
2. Sample s0 ←↩ U(Znq ) and encrypt x2 ∈ Zmq as c0 = B0 · s0 + x2 ∈ Zmq .
3. Sample s ←↩ U(Znq ). For i = 1 to `, sample ei ←↩ DZm,αq and compute ci = Bi · s + p · ei + idj [i] · x2,

which encrypts x2 ∈ Zmq (resp. 0) if idj [i] = 1 (resp. idj [i] = 0).

4. Generate a NIZKPoK π0 of s0 so that (B0, c0,
√

2σ/q; s0) ∈ RLWE (see Section 2.2).
5. For i = 1 to `, generate a NIZKPoK πOR,i of s and s0 so that either:

(i) ((Bi|B0), p−1(ci − c0),
√

2α; (sT | − sT0 )T ) ∈ RLWE (the vectors ci and c0 encrypt the same x2, so
that p−1(ci − c0) is close to the Zq-span of (Bi|B0));

(ii) or (Bi, p
−1ci, α; s) ∈ RLWE (the vector ci encrypts 0, so that p−1ci is close to the Zq-span of Bi).

6 These randomisation steps are not needed for the correctness of the scheme but are important in the traceability proof.
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This can be achieved by OR-ing two proofs for RLWE, and making the resulting protocol non-interactive
with the Fiat-Shamir heuristic.7

6. For i = 1 to `, set yi = idj [i]x2 ∈ Zm and generate a NIZKPoK πK of {ei}`i=0, {yi}`i=0,x1 such that,

xT1 A +
∑̀
i=0

cTi Ai =
∑̀
i=1

eTi
(
pAi

)
and eTi

(
pAi

)
+ yTi Ai = cTi Ai for i ∈ [1, `] (2)

with ‖ei‖, ‖yi‖, ‖x1‖ ≤ max(σ, αq)
√
m for all i. This is achieved using ProveISIS in order to produce a

triple (CommK ,ChallK ,RespK), where ChallK = H(M,CommK , {ci}`i=0, π0, {πOR,i}`i=0).

The signature consists of

Σ =
(
{ci}`i=0, π0, {πOR,i}`i=0, πK

)
. (3)

Verify(gpk,M,Σ): Parse Σ as in (3). Then, return 1 if π0, {πOR,i}`i=0, πK properly verify. Else, return 0.

Open(gpk, gmsk,M,Σ): Parse gmsk as {Si}`i=0 and Σ as in (3). Compute x2 by decrypting c0 using S0. For
i = 1 to `, use Si to determine which one of the vectors p−1ci and p−1(ci−x2) is close to the Zq-span of Bi.
Set id[i] = 0 in the former case and id[i] = 1 in the latter. Eventually, output id = id[1] . . . id[`].

All steps of the scheme above can be implemented in polynomial-time as a function of the security parame-
ter n, assuming that q ≥ 2 is prime, m ≥ Ω(n log q), σ ≥ Ω(m3/2

√
`n log q logm) (using Lemmas 2 and 3), and

αq ≥ Ω(1) (using Lemma 2). Under some mild conditions on the parameters, the scheme above is correct, i.e.,
the verifier accepts honestly generated signatures, and the group manager successfully opens honestly generated
signatures. In particular, multiplying the ciphertexts by the Si modulo q should reveal p · ei + idj [i] · x2 over
the integers, and ‖idj [i] · x2‖∞ should be smaller than p.

Theorem 1. Let us assume that q ≥ 2 is prime and that we have m ≥ Ω(n log q), σ ≥ Ω(m3/2
√
`n log q logm),

α−1 ≥ Ω(pm5/2 logm
√
n log q) as well as q ≥ Ω(α−1 +σm5/2 logm

√
n log q). Then, the group signature scheme

above can be implemented in time polynomial in n, is correct, and the bit-size of the generated signatures
in O(`nm log q).

Proof. Setting m = Ω(n log q) allows us to use algorithms TrapGen and SuperSamp from Lemmas 4 and 5, at
Steps 1 and 2 of algorithm Keygen. Also, the rows of the matrix A sampled at Step 1 span Znq with probability ≥
1−2−Ω(n). At Steps 2 and 3, the second inputs to the calls to RandBasis are sufficiently large for the assumption of
Lemma 3 to hold (note that in the second case, it is much larger than needed, but this choice is important for the

simulation in the traceability proof). At the end of the execution of Keygen, we have ‖S̃i‖ ≤ O(m logm
√
n log q)

for all i ∈ [0, `] and ‖T̃idj‖ ≤ O(m3/2
√
`n log q logm) for all j ∈ [0, N − 1].

At Step 1 of algorithm Sign, the parameter σ is sufficiently large for applying Lemma 2 and obtain a
distribution within statistical distance 2−Ω(n) from DΛ⊥

q (Aidj
),σ. The same holds for all ei’s of Step 3.

Correctness of algorithm Verify follows from the completeness property of the underlying proof systems. Now,
consider algorithm Open. We have S0 · c0 = S0 · x2 mod q. But on the other hand ‖S0 · x2‖ ≤

√
m‖S0‖‖x2‖ ≤

m‖S̃0‖‖x2‖, which is itself O(σm3/2n logm
√
n log q) with probability ≥ 1 − 2−Ω(n), by Lemma 1. As q has

been set sufficiently large, we obtain that S0 · x2 is known over the integers: Multiplying by S−10 over the
rationals allows the group manager to recover x2. The argument is similar for the other ci’s, except that ‖Si ·
ci mod q‖ ≤ O(pαqm3/2n logm

√
n log q). Again, α has been set sufficiently small to allow the group manager

to recover p · ei + idj [i] · x2.

Finally, the total bit-size of all proofs is O(`nm log q). The same bound holds for the ciphertexts. ut

7 The disjunction of two relations that can be proved by Σ-protocols can also be proved by a Σ-protocol [22, 23].
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4 Security

We now focus on the security of the scheme described in Section 3.

4.1 Anonymity

Like in [26, 9], we use a relaxation of the anonymity definition, called weak anonymity and recalled in Definition 3.
Analogously to the notion of IND-CPA security for public-key encryption, the adversary does not have access to
a signature opening oracle. We show that the two versions (for b = 0, 1) of the anonymity security experiment
recalled in Figure 1 are indistinguishable under the LWE assumption. We use several intermediate hybrid

experiments called G
(i)
b , and show that each of these experiments is indistinguishable from the next one. At

each step, we only change one element of the game (highlighted by an arrow in Figure 2), to finally reach the
experiment G(4) where the signature scheme does not depend on the identity of the user anymore.

Theorem 2. In the random oracle model, the scheme provides weak anonymity in the sense of Definition 3
under the LWEq,α assumption. Namely, for any PPT adversary A with advantage ε, there exists an algorithm B
solving the LWEq,α problem with advantage at most 2−Ω(n) smaller.

Proof. We define by G0 the experiment of Definition 3 with b = 0 and by G1 the same experiment with b = 1.
To show the anonymity of the scheme, we prove that G0 and G1 are indistinguishable. We use several hybrid

experiments named G
(1)
b , G

(2)
b , G

(3)
b and G(4) (described in Figure 2), where b is either 0 or 1.

Lemma 7. For each b ∈ {0, 1}, Gb and G
(1)
b are statistically indistinguishable.

We only change the way we generate (xT1 |xT2 )T , by using the fact that one way to generate it is to first
sample x2 from DZm,σ and then generate x1 from DZm,σ such that (xT1 |xT2 ) · Aidjb

= 0 mod q (by using the

trapdoor TA). This change is purely conceptual and the vector (xT1 |xT2 )T has the same distribution anyway.
The two experiments are thus identical from A’s view and x2 is chosen independently of the signer’s identity
in the challenge phase.

Lemma 8. For each b ∈ {0, 1}, G(1)
b and G

(2)
b are statistically indistinguishable.

The differences are simply: Instead of generating the proofs {πOR,i}`i=1 and πK using the witnesses, we
simulate them (see Section 2.2).

Lemma 9. For each b ∈ {0, 1}, if the LWEq,α problem is hard, then the experiments G
(2)
b and G

(3)
b are compu-

tationally indistinguishable.

Proof. This proof uses the same principle as the proof of [26, Claim 1]: We use the adversary A to construct

a PPT algorithm B for the LWEq,α problem. We consider an LWE instance (B′, z) ∈ Zm`×(n+1)
q such that

B′ = (B′1, . . . ,B
′
`) and z = (z1, . . . , z`) with B′i ∈ Zm×nq and zi ∈ Zmq . The component z is either uniform in

Zm`q , or of the form z = B′ · s + e where e is sampled from DZm`,αq and s←↩ U(Zn+1
q ).

We construct a modified Keygen algorithm using this LWE instance: It generates the matrix A with a basis
TA of Λ⊥q (A). Instead of generating the Bi’s genuinely, we pick B0 uniformly in Zm×nq and set Bi = B′i for
1 ≤ i ≤ `. For 0 ≤ i ≤ `, we compute (Ai,Ti) ← SuperSamp(Bi,0). Then, for each 1 ≤ j ≤ N − 1, we define
Aidj as in the original Keygen algorithm, and compute a trapdoor Tidj using TA. The adversary A is given
gpk and {gskj}j . In the challenge phase, it outputs j0, j1 and a message M . By [26], this Keygen algorithm and
the one in all the experiments are statistically indistinguishable. Then, the signature is created on behalf of the
group member jb. Namely, B first chooses x2 ← DZm,σ and finds x1 such that (xT1 |xT2 )T · Aidjb

= 0 mod q.
Then it chooses s0 ←↩ U(Znq ) and computes c0 = B0 · s0 + x2 ∈ Zmq . Third, it computes ci = p · zi + idjb [i] · x2
(with the zi of the LWE instance). Then it generates π0 and simulates the πOR,i’s and πK proofs.
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Experiment Gb

• Run Keygen; give gpk = (A, {Ai,Bi}i) and gsk = {Tidj }j to A.

• A outputs j0, j1 and a message M .
• The signature of user jb is computed as follows:

1. (xT1 |x
T
2 )T ←↩ GPVSample(Tidjb

, σ);

we have (xT1 |x
T
2 ) ·Aidjb

= 0 mod q.

2. Choose s0 ←↩ U(Znq ), compute c0 = B0 · s0 + x2 ∈ Zmq .

3. Choose s←↩ U(Znq ), and for i = 1 to `, choose ei ←↩ DZm,αq
and compute ci = Bi · s + p · ei + idjb [i] · x2.

4. Generate π0.
5. Generate {πOR,i}i.
6. Generate πK .

Experiment G
(2)
b

• Run Keygen; give gpk = (A, {Ai,Bi}i) and gsk = {Tidj }j to A.

• A outputs j0, j1 and a message M .
• The signature of user jb is computed as follows:

1. Sample x2 ←↩ DZm,σ ; sample x1 ←↩ DZm,σ , conditioned on

(xT1 |x
T
2 ) ·Aidjb

= 0 mod q.

2. Choose s0 ←↩ U(Znq ) and compute c0 = B0 · s0 + x2 ∈ Zmq ,

3. Choose s←↩ U(Znq ), and for i = 1 to `, choose ei ←↩ DZm,αq
and compute ci = Bi · s + p · ei + idjb [i] · x2.

4. Generate π0.
→ 5. Simulate {πOR,i}i.
→ 6. Simulate πK .

Experiment G
(1)
b

• Run Keygen; give gpk = (A, {Ai,Bi}i) and gsk = {Tidj }j to A.

• A outputs j0, j1 and a message M .
• The signature of user jb is computed as follows:
→ 1. Sample x2 ←↩ DZm,σ and, using TA, sample x1 ←↩

DZm,σ conditioned on (xT1 |x
T
2 ) ·Aidjb

= 0 mod q.

2. Choose s0 ←↩ U(Znq ), compute c0 = B0 · s0 + x2 ∈ Zmq ,

3. Choose s←↩ U(Znq ), and for i = 1 to `, choose ei ←↩ DZm,αq
and compute ci = Bi · s + p · ei + idjb [i] · x2.

4. Generate π0.
5. Generate {πOR,i}i.
6. Generate πK .

Experiment G
(3)
b

• Run Keygen; give gpk = (A, {Ai,Bi}i) and gsk = {Tidj }j to A.

• A outputs j0, j1 and a message M .
• The signature of user jb is computed as follows:

1. Sample x2 ←↩ DZm,σ Sample x1 ←↩ DZm,σ conditioned on

(xT1 |x
T
2 ) ·Aidjb

= 0 mod q.

2. Choose s0 ←↩ U(Znq ) and compute c0 = B0 · s0 + x2 ∈ Zmq ,

→ 3. For i = 1 to `, choose zi ←↩ U(Zmq ) and compute

ci = zi + idjb [i] · x2.
4. Generate π0.
5. Simulate {πOR,i}i.
6. Simulate πK .

Experiment G(4)

• Run Keygen; give gpk = (A, {Ai,Bi}i) and gsk = {Tidj }j to A.

• A outputs j0, j1 and a message M .

• The signature of user jb is computed as follows:

→ 1. Sample x2 ←↩ DZm,σ .

2. Choose s0 ←↩ U(Znq ) and compute c0 = B0 · s0 + x2 ∈ Zmq ,

→ 3. For i = 1 to `, choose zi ←↩ U(Zmq ) and set ci = zi.
4. Generate π0.
5. Simulate {πOR,i}i.
6. Simulate πK .

Fig. 2. Experiments Gb, G
(1)
b , G

(2)
b ,G

(3)
b and G(4).

We let DLWE denote this experiment when z = B′ · s+e: This experiment is statistically close to G
(2)
b . Then,

we let Drand denote this experiment when z is uniform: It is statistically close to G
(3)
b . As a consequence, if the

adversary A can distinguish between the experiments G
(2)
b and G

(3)
b with some advantage, then we can solve

the LWEq,α problem with advantage at most 2−Ω(n) smaller.

Lemma 10. For each b ∈ {0, 1}, G(3)
b and G(4) are indistinguishable.

Between these two experiments, we change the first and third steps. In the former, we no longer generate
x1 and, in the latter, ci is uniformly sampled in Zmq . These changes are purely conceptual. Indeed, in experi-

ment G
(3)
b , the vector x1 is not used beyond Step 1. In the same experiment, we also have ci = zi+idjb [i]. Since

the zi’s are uniformly sampled in Zmq , the ci’s are also uniformly distributed in Zmq . As a consequence, the ci’s

of G
(3)
b and the ci’s of G(4) have the same distribution. In G

(4)
b , we conclude that A’s view is exactly the same

as in experiments G
(3)
b . ut

Since the experiment G(4) no longer depends on the bit b ∈ {0, 1} that determines the signer’s identity, the
announced result follows.
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4.2 Traceability

The proof of traceability relies on the technique of [1, 10] and a refinement from [30, 39], which is used in order
to allow for a smaller modulus q.

A difference with the proof of [26] is that we need to rely on the knowledge extractor of a proof of knowl-
edge πK . We distinguish two cases, depending on whether the extracted witnesses {ei,yi}`i=1 of relation (2)
satisfy yi = idj [i]x2 for all i or not. The strategy of the reduction and the way it uses its given SISm,q,β instance
will depend on which case is expected to occur.

Theorem 3. Assume that q > logN , m ≥ Ω(n log q), p ≥ Ω((αq + σ)m3/2n) and β ≥ Ω(σm5/2n
√

logN +
pαqm3/2n). Then for any PPT traceability adversary A with success probability ε, there exists a PPT algorithm B
solving SISm,q,β with probability ε′′ ≥ ε′

2N · (
ε′

qH
−2−t)+ ε′

2 logN , where ε′ = ε−2−t−2−Ω(n) and qH is the number

of queries to the random oracle H : {0, 1}∗ → {0, 1}t.

Proof. Let A be a PPT adversary that can defeat the traceability of the scheme with non-negligible success
probability ε in the game of Definition 4. We construct a PPT algorithm B that emulates A’s challenger and
attacks SISm,q,β : It takes as input Ā ∈ Zm×nq with the task of finding v ∈ Λ⊥q (Ā) with 0 < ‖v‖ ≤ β.

Initialization. Before starting its interaction with A, algorithm B samples coin ←↩ U({0, 1}). It also samples
j? ←↩ U([0, N − 1]), a guess that A’s forgery will open to user j?. Depending on coin, the group public key is
prepared in two different ways.

• If coin = 0, algorithm B first calls TrapGen(1n, 1m, q) to obtain C ∈ Zm×nq and a basis TC of Λ⊥q (C) with

‖T̃C‖ ≤ O(
√
n log q). Then, it samples `+1 matrices Qk ∈ Zm×m, with each matrix entry sampled independently

from DZ,
√
m (as in [10, Th. 25], with a larger standard deviation to get exponentially small statistical distances

later on).. Let idj? = idj? [1] . . . idj? [`] ∈ {0, 1}` denote the binary expansion of idj? . The reduction B defines
the matrices {Ai}`i=0 as {

A0 = Q0 · Ā + (
∑`
i=1 idj? [i]) ·C

Ai = Qi · Ā + (−1)idj? [i] ·C, for i ∈ [1, `].

It also sets A = Ā. Next, it runs SuperSamp(Ai,0) to obtain Bi ∈ Zm×nq along with short bases S′i of Λ⊥q (Bi),

and then computes Si ← RandBasis(S′i, Ω(
√
mn log q logm)), as in Step 2 of the genuine key generation algo-

rithm. The group public key gpk =
(
A, {Ai,Bi}`i=0

)
is finally given to A.

We note that, for each j 6= j?, we have

Aidj =

[
Ā

A0 +
∑`
i=1 idj [i]Ai

]
=

[
Ā

(Q0 +
∑`
i=1 idj [i]Qi) · Ā + (

∑`
i=1 idj? [i] + (−1)idj? [i]idj [i]) ·C

]
=

[
Ā

(Q0 +
∑`
i=1 idj [i]Qi) · Ā + hidj ·C

]
where hidj ∈ [1, `] stands for the Hamming distance between the identifiers idj and idj? . Since q > `, we have
hidj 6= 0 mod q whenever idj 6= idj? , so that algorithm B is able to compute (see [1, Se. 4.2], using the basis TC

of Λ⊥q (C) and the refined GPVSample of Lemma 2) a basis T′idj of Λ⊥q (Aidj ) with ‖T̃′idj‖ ≤ Ω(m
√
`n log q).

Then algorithm B runs Tidj
← RandBasis(T′idj , Ω(m

√
`n log q logm)). Algorithm B is thus able to compute a

trapdoor Tidj for each j 6= j?. In contrast, algorithm B lacks a trapdoor for Aidj? as the latter only depends

on A and {Qk}`k=0.
Observe that since the rows of the Qk’s are sampled from DZm,

√
m, the matrices A,A0, . . . ,A` are within

statistical distance 2−Ω(m) of U(Zm×nq ) (this is a consequence of [25, Le. 5.2]). Further, by Lemma 3, the
distribution of the Tidj ’s generated by B is statistically close to that of the real scheme.
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• If coin = 1, algorithm B samples i? ←↩ U([1, `]) and embeds its SISm,q,β instance in the matrix Ai? that

will be part of gpk. It calls TrapGen(1n, 1m, q) to obtain A ∈ Zm×nq and a basis TA of Λ⊥q (A) with ‖T̃A‖ ≤
O(
√
n log q). Next, it independently samples A0, . . . ,Ai?−1,Ai?+1, . . . ,A` ←↩ U(Zm×nq ) and defines Ai? = Ā.

Then, algorithm B computes (Bi,S
′
i) ← SuperSamp(Ai,0) and Si ← RandBasis(S′i, Ω(

√
mn log q logm)), as in

Step 2 of Keygen. The group public key gpk =
(
A, {Ai,Bi}`i=0

)
, which is distributed as in the real scheme, is

given to the adversary A. Since it knows TA, algorithm B is able to sample a trapdoor Tidj for all users, with
exactly the same distribution as in the real scheme.

In either case, B runs the adversary A on inputs gpk =
(
A, {Ai,Bi}`i=0

)
and gmsk = {Si}`i=0.

Queries. Algorithm B then starts interacting with A and handles A’s queries depending on coin.

• If coin = 0, it aborts in the event that A queries the unavailable secret key gsk[j?]. When A queries a secret key
gsk[j] for j 6= j?, algorithm B reveals the short basis Tidj that was computed in the initialization phase. When
it comes to answer signing queries, algorithm B faithfully runs the signing algorithm whenever the involved
user j differs from j?. As for signing queries involving the expected target user j?, the reduction B samples
s0, s ←↩ U(Znq ), x2 ←↩ DZm,σ and ei ←↩ DZm,αq for each i ∈ [1, `]. It then computes c0 = B0 · s0 + x2 as well
as ci = Bi · s + p · ei + idj? [i]x2 for each i ∈ [1, `]. The proof π0 is then generated using the actual witness x2

whereas the other non-interactive proofs {πOR,i}`i=1 and πK are simulated (exactly as in experiment G
(2)
b in

the proof of anonymity). By the statistical zero-knowledge property of the simulator, the signature Σ will be
statistically indistinguishable from a genuine signature.

• If coin = 1, algorithm B knows TA and can answer A’s queries by running the real signing algorithm or
returning the queried secret keys gsk[j] (all of which are available).

Regardless of the value of coin, queries to the random oracle H are handled by returning a uniformly chosen
value in {0, 1}t. For each κ ≤ qH , we let rκ denote the answer to the κ-th H-query. Of course, if the adversary
makes a given query more than once, then B consistently returns the previously defined value.

Forgery. When A terminates, it outputs a signature Σ? =
(
{c?i }`i=0, π

?
0 , {π?OR,i}`i=0, π

?
K

)
on some message M?

with probability ≥ ε − 2−Ω(n). If we parse π?K as (Comm?
K ,Chall

?
K ,Resp

?
K), with overwhelming probability,

the adversary A must have queried H on the input (M?,Comm?
K , {c?i }`i=0, π

?
0 , {π?OR,i}`i=0). Indeed, otherwise,

the probability to have the equality Chall?K = H(M?,Comm?
K , {c?i }`i=0, π

?
0 , {π?OR,i}`i=0) is at most 2−t. With

probability ≥ ε′ := ε − 2−t − 2−Ω(n), the tuple (M?,Comm?
K , {c?i }`i=0, π

?
0 , {π?OR,i}`i=0) thus coincides with the

κ?-th hash query for some κ? ≤ qH .
At this stage, the reduction B runs a second execution of the adversary A with the same random tape and

input as in the original execution. All queries are answered as previously with only one difference in the treatment
of random oracle queries. Namely, the first κ?−1 hash queries – which are identical to those of the first execution
since A is run with the same random tape as before – receive the same answers r1, . . . , rκ?−1 as in the initial
run. This implies that the κ?-th query will involve the tuple (M?,Comm?

K , {c?i }`i=0, π
?
0 , {π?OR,i}`i=0) as in the

first execution. However, from the κ?-th query onwards, A obtains fresh random oracle values r′κ? , . . . , r
′
qH which

depart from the sequence of answers in the first execution. The General Forking Lemma of [6] implies that, with
probability ≥ ε′(ε′/qH−2−t), A’s forgery also involves (M?,Comm?

K , {c?i }`i=0, π
?
0 , {π?OR,i}`i=0) in the second run

and we also have r′κ? 6= rκ? . In this case, using Extract, algorithm B can obtain vectors e1, . . . , e`,x1,y1, . . . ,y` ∈
Zm satisfying

xT1 A +
∑̀
i=0

cTi Ai =
∑̀
i=1

eTi (pAi) and eTi
(
pAi

)
+ yTi Ai = cTi Ai for i ∈ [1, `] (4)

with ‖ei‖, ‖yi‖, ‖x1‖ ≤ O((αq + σ)m3/2n) for all i ∈ [1, `] (see Section 2.2).
The reduction B then opens one of the two forgeries using {Si}`i=0 (note that both signatures necessarily

open to the same identity id). At this point, B aborts and reports failure if the opening algorithm does not point
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to user j?. However, with probability ≥ 1/N , B’s initial choice for j? turns out to be correct and the opening
algorithm reveals idj? .

We now assume that Σ? indeed traces to user j?. We let x2 ∈ Zm denote the vector obtained by decrypting
c?0 using S0. Algorithm B considers the following two situations:

• If yi = idj? [i]x2 for all i ∈ [1, `], then B aborts if coin = 1 and continues if coin = 0. The relations (4) and
the fact that c?0 is of the form c?0 = B0 · s0 + x2 mod q with BT

0 ·A0 = 0 mod q imply that (modulo q):

0 = xT1 A + c?0
TA0 +

∑̀
i=1

idj? [i]xT2 ·Ai = (xT1 |xT2 ) ·
[

A

A0 +
∑`
i=1 idj? [i]Ai

]
= (xT1 |xT2 ) ·

[
Ā

(Q0 +
∑`
i=1 idj? [i]Qi) · Ā

]
,

by construction of the matrices A,A0, . . . ,A`. It comes that vT = xT1 + xT2 ·
(
Q0 +

∑`
i=1 idj? [i]Qi

)
∈ Λ⊥(Ā).

The same analysis as in [10] shows that 0 < ‖v‖ ≤ O((αq + σ)m5/2n
√
`) holds with probability 1− 2−Ω(m).

• If there exists i ∈ [1, `] such that yi 6= idj? [i]x2, then B aborts if coin = 0 and continues if coin = 1. The
non-interactive proofs π0 and πOR,i imply that ci = Bi · s + pe′i + idj? [i]x2 mod q for some s0, s ∈ Znq and

x2, e
′
i ∈ Zm such that ‖x2‖ ≤ O(σm3/2n) and ‖e′i‖ ≤ O(αqm3/2n). If we multiply cTi by Ai, we find

cTi Ai = pe′i
T ·Ai + idj? [i]xT2 ·Ai.

By subtracting the latter equation from the second equation of (4), we find (still modulo q):(
p(eTi − e′i

T
) + (yTi − idj? [i]xT2 )

)
·Ai = 0.

If p(ei− e′i) + (yi− idj? [i]x2) 6= 0, it is a non-zero vector in Λ⊥(Ai) of norm ≤ O((σ+ pαq)m3/2n). Given that
we have Ai = Ā with probability 1/`, then i = i?, we solved the given SIS instance with the same probability.
Finally, if p(ei−e′i) + (yi− idj? [i]x2) = 0, the relative norms of the vectors ei, e

′
i,yi,x2 with respect to p imply

ei = e′i and yi = idj? [i]x2 (over the integers), which is in contradiction with yi 6= idj? [i]x2.

The lower bound on B’s advantage is obtained by combining the probability of obtaining a successful forking,
the fact that B’s choice for j? ∈ U([0, N − 1]) is independent of A’s view when coin = 0 and the observation
that B’s choice for coin is also independent of A’s view. ut

5 A Variant with Full (CCA-)Anonymity

We modify our basic group signature scheme to reach the strongest anonymity level (Definition 3), in which
the attacker is authorized to query an opening oracle. This implies the simulation of an oracle which opens
adversarially-chosen signatures in the proof of anonymity. To this end, we replace each Bi from our previous
scheme by a matrix Bi,VK that depends on the verification key VK of a strongly unforgeable one-time signature.
The reduction will be able to compute a trapdoor for all these matrices, except for one specific verification key
VK? that will be used in the challenge phase. This will provide the reduction with a backdoor allowing it to
open all adversarially-generated signatures.

It is assumed that the one-time verification keys VK belong to Znq (note that this condition can always be
enforced by hashing VK). Following Agrawal et al. [1], we rely on a full-rank difference function Hvk : Znq → Zn×nq

such that, for any two distinct u,v ∈ Znq , the difference Hvk(u)−Hvk(v) is a full rank matrix.

Keygen(1n, 1N ): Given a security parameter n > 0 and the desired number of members N = 2` ∈ poly(n),
choose parameters q,m, p, α, σ as in Section 3 and make them public. Choose a hash function H : {0, 1}∗ →
{0, 1}t for some t = Θ(n), that will be modelled as a random oracle, and a one-time signature Πots =
(G,S,V). Then, proceed as follows.
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1. Run TrapGen(1n, 1m, q) to get A ∈ Zm×nq and a short basis TA of Λ⊥q (A).
2. For i = 0 to `, repeat the following steps.

a. Choose uniformly random matrices Ai,1,Bi,0,Bi,1 ∈ Zm×nq .

b. Sample Ai,2 uniformly such that BT
i,1 ·Ai,2 = 0 mod q. Define

Ai =

[
Ai,1

Ai,2

]
∈ Z2m×n

q .

c. Run (Bi,−1,S
′
i)← SuperSamp(Ai,1,−AT

i,2 ·Bi,0) to obtain Bi,−1 ∈ Zm×nq such that

BT
i,−1 ·Ai,1 + BT

i,0 ·Ai,2 = 0 mod q.

d. Compute a re-randomized trapdoor Si ← RandBasis(S′i, Ω(
√
mn log q logm))for Bi,−1.

For any string VK, if the matrix Hvk(VK) is used to define

Bi,VK =

[
Bi,−1

Bi,0 + Bi,1Hvk(VK)

]
∈ Z2m×n

q ,

we have BT
i,VK ·Ai = 0 mod q for all i.

3. For j = 0 to N − 1, let idj = idj [1] . . . idj [`] ∈ {0, 1}` be the binary representation of idj and define:

Aidj =

[
A

A0 +
∑`
i=1 idj [i]Ai

]
∈ Z3m×n

q .

Then run T′idj ← ExtBasis(TA,Aidj ) to get a short delegated basis T′idj of Λ⊥q (Aidj ). Finally, run

Tidj
← RandBasis(T′idj , Ω(m

√
`n log q logm)) and define gsk[j] := Tidj .

4. Finally, define gpk :=
(
A, {Ai, (Bi,−1,Bi,0,Bi,1)}`i=0, Π

ots
)

and gmsk := {Si}`i=0. The algorithm out-

puts
(
gpk, gmsk, {gsk[j]}N−1j=0

)
.

Sign(gpk, gsk[j],M): To sign a message M ∈ {0, 1}∗ using the private key gsk[j] = Tidj , generate a one-time
signature key pair (VK,SK)← G(1n) for Πots and proceed as follows.

1. Run GPVSample(Tidj , σ) to get (xT1 |xT2 )T ∈ Λ⊥q (Aidj ) of norm ≤ σ
√

3m.
2. Sample s0 ←↩ U(Znq ) and encrypt x2 ∈ Z2m as c0 = B0,VK · s0 + x2 ∈ Z2m

q .
3. Sample s ←↩ U(Znq ). For i = 1 to `, sample ei ← DZm,αq and a random matrix Ri ∈ Zm×m whose

columns are sampled from DZm,σ. Then, compute ci = Bi,VK · s + p ·
[
ei eTi ·Ri

]
+ idj [i] · x2, which

encrypts x2 ∈ Z2m (resp. 02m) if idj [i] = 1 (resp. idj [i] = 0).
4. Generate a NIZKPoK π0 of s0 so that (B0, c0,

√
2σ/q; s0) ∈ RLWE.

5. For i = 1 to `, generate a NIZKPoK πOR,i of s and s0 so that either:
(i) ((Bi,VK|B0,VK), p−1(ci − c0),

√
2α; (sT | − sT0 )T ) ∈ RLWE (the vectors ci and c0 encrypt the same x2,

so that the vector p−1(ci − c0) is close to the Zq-span of (Bi,VK|B0,VK));
(ii) or (Bi,VK, p

−1ci, α; s) ∈ RLWE (the vector ci encrypts 0, so that p−1ci is close to the Zq-span
of Bi,VK).

6. For i = 1 to `, set yi = idj [i]x2 ∈ Z2m and generate a NIZKPoK πK of {ei}`i=1, {yi}`i=1, x1 such that:

xT1 A +
∑̀
i=0

cTi Ai =
∑̀
i=1

eTi
(
p ·Ai

)
and eTi

(
p ·Ai

)
+ yTi Ai = cTi Ai for i ∈ [1, `],

with ‖ei‖, ‖yi‖, ‖x1‖ ≤ max(σ, αq) ·
√

2m.
This is achieved using ProveISIS, giving a triple (CommK ,ChallK ,RespK), where
ChallK = H(M,CommK , {ci}`i=0, π0, {πOR,i}`i=0).

7. Compute sig = S(SK, {ci}`i=0, π0, {πOR,i}`i=0, πK).
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The signature consists of

Σ =
(
VK, {ci}`i=0, π0, {πOR,i}`i=0, πK , sig

)
. (5)

Verify(gpk,M,Σ): Parse the signature Σ as in (5). Then, return 1 in the event that
V(VK, sig, {ci}`i=0, π0, {πOR,i}`i=0, πK) = 1. and if all proofs π0, {πOR,i}`i=0, πK properly verify. Otherwise,
return 0.

Open(gpk, gmsk,M,Σ): Parse gmsk as {Si}`i=0 and Σ as in (5). For i = 0 to `, compute a trapdoor Si,VK ←
ExtBasis(Si,Bi,VK) for Bi,VK. Using the delegated basis S0,VK ∈ Z2m×2m (for which we have S0,VK ·B0,VK =
0 mod q), compute x2 by decrypting c0. Then, using Si,VK ∈ Z2m×2m, determine which vector among
p−1ci mod q and p−1(ci − x2) mod q is close to the Zq-span of Bi,VK. Set id[i] = 0 in the former case and
id[i] = 1 in the latter. Eventually, output id = id[1] . . . id[`].

We now prove the following theorems.

Theorem 4. In the random oracle model, the scheme provides full anonymity in the ROM if the LWEq,α
assumption holds and if the one-time signature is strongly unforgeable.

Theorem 5. Assuming that q > logN is fully traceable in the ROM under the SISm,q,β assumption. More
precisely, for any PPT traceability adversary A with success probability ε, there exists an algorithm B solving

the SISm,q,β problem with probability at least 1
2N ·

(
ε− 1

2t

)
·
(
ε−1/2t
qH

− 1
2t

)
, where qH is the number of queries

to H : {0, 1}∗ → {0, 1}t.
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A One-time Signatures

A one-time signature scheme consists of a triple of algorithms Πots = (G,S,V) such that, on input of a security
parameter 1n, G generates a one-time key pair (SK,VK); S is a possibly randomized algorithm that outputs a
signature sig ← S(SK,M) on input of SK and M ; and V(VK, sig,M) is a deterministic algorithm that outputs
1 or 0. The standard correctness requirement mandates that V always accepts the signatures generated by S.

In a strongly unforgeable one-time signature, the adversary is not only unable to forge a signature on a new
message but, in addition, no PPT adversary can create a new signature for a previously signed message.

Definition 5. Πots = (G,S,V) is a strongly unforgeable one-time signature if the probability

AdvOTS(n) = Pr
[
(SK,VK)← G(1n); (M,St)← F(VK); sig ← S(SK,M);

(M ′, sig′)← F(VK,M, sig, St) : V(VK′, sig′,M ′) = 1 ∧ (M ′, sig′) 6= (M, sig)
]
,

is negligible for any PPT forger F , where St denotes F ’s state information across stages.

B Proof of Lemma 5

The algorithm is a simple extension of the one in [26]. It first partitions B into matrices B1 ∈ Zm1×n
q and

B2 ∈ Zn×nq , with m1 = m − n, such that B2 is invertible over Zq and BT = [BT
1 |BT

2 ]. Such a partition can
always be found by re-arranging the rows of B if necessary. The execution of SuperSamp(B,C) then proceeds
with the following steps.

1. Generate (A1,T1)← TrapGen(1n, 1m1 , q). Return ⊥ if the rows of A1 ∈ Zm1×n
q do not span Znq .

2. Compute A2 = B−T2 · (C−BT
1 ·A1) mod q. Note that A =

[
A1

A2

]
satisfies BT ·A = C mod q.

3. Extend T1 ∈ Zm1×m1 to have a basis T ∈ Zm×m for A using ExtBasis from Lemma 6. Then, re-randomize
T to obtain TA using the basis randomization algorithm RandBasis.

The rest of the proof is identical to the proof of Lemma 4 in [26]. ut

C Security Proofs for the Fully Anonymous Construction

C.1 Proof of Theorem 4 (full anonymity)

We now prove the full anonymity of the scheme in an attack game which is exactly the one of Definition 3
with the difference that the adversary is granted access to a signature opening oracle. Namely, before and
after the challenge phase, the latter oracle can be invoked for adversarially-chosen signatures as long as these
do not coincide with the challenge signature Σ?. The proof of Theorem 4 relies on the all-but-one simulation
technique [8] in the same way as in the Agrawal-Boneh-Boyen IBE [1].
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Proof. Like the proof of Theorem 2, the proof proceeds via a sequence of hybrid experiments. For each i, we

define Wi to be the event that experiment G
(b)
i outputs 1.

Experiment G
(b)
0 . This experiment if the real attack game. Namely, the challenger performs the setup of the

system by following the specification of the Keygen algorithm. The adversary A is given gpk and {gsk[j]}N−1j=0

at the beginning of the game. All opening queries are answered faithfully, by returning the uncovered identity
id ∈ {0, 1}`. At the challenge phase, the adversary chooses a message M as well as indexes j0, j1 ∈ {0, . . . , N−1}
and obtains a challenge Σ? =

(
VK?, c?0, c

?
1, . . . , c

?
` , π

?
0 , π

?
OR,1, . . . , π

?
OR,`, π

?
K , sig

?
)
← Sign(gpk, gsk[jb],M). The

experiment ends with the adversary A outputting a bit b′ ∈ {0, 1}. At this point, the experiment returns 1 if
b′ = b and 0 otherwise. The probability Pr[W0] is thus the probability to have b′ = b.

Experiment G
(b)
1 . We make a simple conceptual change to the generation of the challenge signature Σ?.

Namely, instead of sampling (xT1 |xT2 )T ∈ Z3m in Λ⊥(Aid), Experiment G
(b)
1 first samples x2 ←↩ DZ2m,σ and uses

the trapdoor TA to compute x1 ∈ DZm,σ such that (xT1 |xT2 ) ·Aid = 0 mod q. This change is purely conceptual
since the vector (xT1 |xT2 )T has the same distribution either way. Clearly, it holds that Pr[W1] = Pr[W2].

Experiment G
(b)
2 . We introduce a slight modification w.r.t. Experiment G

(b)
1 . At the outset of the game, the

challenger generates a one-time signature key pair (VK?,SK?)← G(1n). If A queries the opening oracle with a
valid signature Σ =

(
VK, c0, c1, . . . , c`, π0, πOR,1, . . . , πOR,`, πK , sig

)
such that VK = VK?, the experiment halts

and outputs a random bit. The assumed strong security of the one-time signature implies that Experiment G
(b)
2

cannot depart from Experiment G
(b)
1 . Indeed, if a valid opening query is made after the challenge phase, the

adversary is able to break the strong unforgeability of the one-time signature (the proof is straightforward and
omitted). Moreover, before the challenge phase, the one-time verification key VK? is independent of A’s view.
As long as no one-time verification key is produced by the one-time key generation algorithm with too high
probability (which is implied by the strong unforgeability property), the chance of VK? to show up in a valid
pre-challenge opening query is negligible. There thus exists a PPT forger Bots against the one-time signature
for which |Pr[W2]− Pr[W1]| ≤ Advsuf-ots(Bots). In the following, we henceforth assume that no opening query
involves VK?.

Experiment G
(b)
3 . We bring a first modification to the generation of the group public key gpk in the setup

phase. Namely, for each i ∈ {0, . . . , `}, the experiment first runs (Bi,1,Ti,1) ← TrapGen(1n, 1m, q) to obtain a
matrix Bi,1 ∈ Zm×nq with a short basis Ti,1 ∈ Zm×m. Note that the distribution of Bi,1 is statistically close
to the uniform distribution over Zm×nq . Next, the experiment sets Bi,0 = Ri ·Bi,−1 −Bi,1 ·Hvk(VK?), where
Ri ∈ Zm×m is a matrix whose rows are vectors sampled from the distribution DZm,σ. The result of [25, Lemma
5.2] implies that matrices {Bi,0}`i=0 will be statistically close to the uniformly distributed matrices produced
by the real key generation algorithm. We can write |Pr[W3]− Pr[W2]| ∈ negl(1n).

Experiment G
(b)
4 . In this experiment, we modify the signature opening oracle in the following way. Re-

call that, due to the modification introduced in Experiment G
(b)
2 , each opening query involves a signature

Σ =
(
VK, c0, c1, . . . , c`, π0, πOR,1, . . . , πOR,`, πK , sig

)
for which VK 6= VK? unless the one-time signature is not

strongly unforgeable. For this reason, each matrix Bi,VK can be written as

Bi,VK =

[
Bi,−1

Bi,0 + Bi,1Hvk(VK)

]
=

[
Bi,−1

Ri ·Bi,−1 + Bi,1 ·
(
Hvk(VK)−Hvk(VK?)

)] ,
where Hvk(VK)−Hvk(VK?) is a non-singular n×n matrix over Zq. This implies that the trapdoor Ti,1 ∈ Zm×m

of Bi,1 – which was defined in Experiment G
(b)
3 – can be used to generate a short basis for the lattice Λ⊥(Bi,VK)

as in step 2 of the SampleRight algorithm of [1, Section 4.2]. The obtained short basis Ti,VK ∈ Z2m×2m satisfies
Ti,VK ∈ Z2m×2m ·Bi,VK = 0 mod q and it can be used exactly in the same way as the delegated bases Si,VK of
the actual opening algorithm to identify the signer. This modification is thus purely conceptual and we thus
have Pr[W4] = Pr[W3]. We remark that, in this experiment, the trapdoors {Si}`i=0 of matrices {Bi,−1}`i=0 are
not used any longer.
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Experiment G
(b)
5 . This experiment is identical to Experiment G

(b)
4 but we slightly modify the setup phase in

step c of the key generation algorithm. Recall that Experiment G
(b)
4 generates

(Bi,−1,S
′
i) ← SuperSamp(1n, 1m, q,Ai,1,−AT

i,2 · Bi,0) so as to obtain a matrix Bi,−1 ∈ Zm×nq satisfying the
equality

BT
i,−1 ·Ai,1 + BT

i,0 ·Ai,2 = 0 mod q (6)

at step c of Keygen. In contrast, Experiment G
(b)
5 proceeds by generating (Bi,1,Ti,1)← TrapGen(1n, 1m, q) and

choosing Bi,−1,Bi,0 uniformly in Zm×nq . Then, it generates

(Ai,1,T
′
i)← SuperSamp(1n, 1m, q,Bi,−1,−BT

i,0 ·Ai,2),

which satisfies (6). The same arguments as in [26, Lemma 5] imply that {Bi,−1,Bi,0,Bi,1,Ai}`i=0 have a

distribution which is negligibly far apart from their distribution in Experiment G
(b)
4 .

The setup phase is completed by using TA to compute group member’s private keys {gsk[j]}N−1j=0 . Since A’s
view is not noticeably affected by this modification, we have |Pr[W5]− Pr[W4]| ∈ negl(1n).

Experiment G
(b)
6 . Here, we modify the generation of the challenge signature Σ? as follows. At step 5 of the

signing algorithm, instead of computing the NIZK proofs {π?OR,i}`i=1 using the actual witnesses, the experiment
generates a simulated non-interactive proof by programming the random oracle. The statistical zero-knowledge
property of the Micciancio-Vadhan proof system [40] guarantees that the distribution of {π?OR,i}`i=1 remains

statistically unchanged (note that {π?OR,i}`i=1 are simulated proofs for true statements). Therefore it comes that
|Pr[W6] − Pr[W5]| ∈ negl(1n). Note that negl(1n) incorporates the small probability that the NIZK simulator
fails because it accidentally has to program the random oracle on an input where it was previously defined.

Experiment G
(b)
7 . In this experiment, we bring a new modification to the generation of Σ?. The real proof

of knowledge π?K is replaced by a simulated proof which is obtained by programming the random oracle H at
step 6 of the signing algorithm. Similarly to the previous transition, we can write |Pr[W7]−Pr[W6]| ∈ negl(1n),
where negl(1n) encompasses the tiny probability that the NIZK simulator fails.

Experiment G
(b)
8 . We introduce yet another change in the generation of Σ?. For each i ∈ {1, . . . , `}, instead of

computing c?i = Bi,VK? · s + p · ei + id[jb]x2, where x2 ∈ Z2m is the vector encrypted by c0, the experiment sets
c?i = zi+id[jb]·x2 for a randomly drawn zi ←↩ U(Z2m

q ). Under the LWEq,α assumption, we argue that this change

should not significantly affect A’s view. Concretely, assuming that an adversary can distinguish Experiment G
(b)
8

from Experiment G
(b)
7 , we can build a distinguisher Blwe for the LWEq,α. The latter distinguisher is described

in the proof of Lemma 11 for completeness. For this reason, we find |Pr[W8]− Pr[W7]| ≤ AdvLWEq,α(Blwe).

Experiment G
(b)
9 . As a final change in the generation of Σ?, we choose c?i at random in U(Z2m

q ) for i = 1 to `.

This is just a conceptual change since {c?i }`i=1 have exactly the same distribution as in Experiment G
(b)
8 . This

implies Pr[W9] = Pr[W8]. Moreover, in Experiment G
(b)
9 , it is obvious that Pr[W9] = 1/2 since Σ? is completely

independent of the random bit b ∈R {0, 1}.

To conclude the proof, we prove the indistinguishability of Experiment G
(b)
8 and Experiment G

(b)
7 .

Lemma 11. Under the LWEq,α assumption, no PPT adversary can distinguish Experiment G
(b)
8 and Experi-

ment G
(b)
7 .

Proof. Towards a contradiction, suppose that an adversary A can tell the two experiments apart with non-
negligible advantage. We build the following LWE distinguisher Blwe. It takes as input a LWEq,α instance
{(B′i, zi)}`i=1, where B′i ∈ Zm×nq and zi ∈ Zmq for each i ∈ {1, . . . , `}. Each component zi is either uniform in
Zmq or of the form zi = B′i · s + ei, where ei is sampled from DZm,αq.
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In order to prepare the group public key gpk, algorithm Blwe defines Bi,−1 = B′i for i = 1 to `. For
each i ∈ {1, . . . , `}, it also generates Bi,1 by running (Bi,1,Ti,1) ← TrapGen(1n, 1m, q) and also sets Bi,0 =

Ri · Bi,−1 − Bi,1Hvk(VK?) as in Experiment G
(b)
7 . By doing so, Blwe is able to answer all signature opening

queries using the trapdoor Ti,1 of Bi,1 unless the failure event introduced in Experiment G
(b)
2 occurs.

During the challenge phase, Blwe samples x2 in DZ2m,σ and defines

c?i =

[
p · zi

Ri · (p · zi)

]
+ id[jb] · x2, for i ∈ {1, . . . , `},

while c?0 is obtained by faithfully encrypting x2. The proof π?0 is generated as a real proof whereas {π?OR,i}`i=1

and π?K are obtained from their respective NIZK simulators.
After the challenge phase, A is granted further access to the opening oracle and its opening queries are

handled as in the first phase. At the end of the experiment, A outputs a random bit b′ and Blwe outputs 1 if
and only if b′ = b.

We note that each Bi,VK? is such that Bi,VK? =

[
Bi,−1

Ri ·Bi,−1

]
for i = 1 to `. If each zi is such that zi = B′i·s+ei,

where ei ∈ DZm,αq, then {c?i }`i=1 are distributed as in Experiment G
(b)
7 . Indeed, the matrices {Ri}`i=1 introduced

in Experiment G
(b)
3 are statistically independent of A’s view until the challenge phase because the product

Ri ·Bi,−1 is statistically close to the uniform distribution over Zm×nq . In this case, the reduction Blwe is running

Experiment G
(b)
7 with A. Now, if each zi is uniform in Zmq , we are clearly in Experiment G

(b)
8 . ut

C.2 Proof of Theorem 5 (traceability)

The traceability property is proved in the same way as in the proof of Theorem 3.

Proof. For the sake of contradiction, let us assume that a traceability adversary A has non-negligible success
probability ε in the model of Definition 4. In the random oracle model, we build an algorithm B that solves
a given SIS2m,q,β instance with non-negligible probability. Algorithm B receives as input a matrix Â ∈ Z2m×n

q

and has to find a vector v ∈ Z2m in Λ⊥q (Â) such that 0 < ‖v‖ ≤ β. Let Ā ∈ Zm×nq be the matrix consisting of

the first m rows of Â.

Initialization. As in the proof of Theorem 3, algorithm B first flips a fair coin coin ←↩ U({0, 1}) that will
determine its strategy and the way to set up the group public key. If coin = 0, algorithm B will try to find a
non-zero short vector of Λ⊥q (Ā) and pad it with zeroes to obtain a short non-zero vector in Λ⊥q (Â). If coin = 1,

B will embed the entire input matrix Â in one of the {Ai}`i=1.

• If coin = 0, algorithm B first runs TrapGen(1n, 12m, q) to generate C ∈ Z2m×n
q with a basis TC ∈ Z2m×2m

of Λ⊥q (C) with ‖T̃C‖ ≤ O(
√
n log q). Next, B samples a collection of `+ 1 matrices Q0, . . . ,Q` ∈ Z2m×m, where

each matrix entry sampled independently in DZ,ω(
√
logn). Then, B draws j? ←↩ U([0, N−1]), hoping that user j?

will be the one whose identity idj? = idj? [1] . . . idj? [`] ∈ {0, 1}` will be uncovered by the opening algorithm for

A’s forgery at the end of the game. Also, B defines A0 = Q0 ·Ā+(
∑`
i=1 idj? [i])·C and Ai = Qi ·Ā+(−1)idj? [i] ·C

for each i ∈ [1, `]. It also sets A = Ā.
Then, for each i ∈ {0, . . . , `}, B chooses Bi,0 ←↩ U(Zm×nq ) and parses the matrix Ai ∈ Z2m×n

q as AT
i =[

AT
i,1 AT

i,2

]
, where Ai,1,Ai,2 ∈ Zm×nq . It runs (Bi,1,TBi,1)← SuperSamp(1n, 1m, q,Ai,2,0) to obtain a matrix

Bi,1 ∈ Zm×nq such that AT
i,2 ·Bi,1 = 0 mod q. It erases TBi,1 , that will not be needed, and generates (Bi,−1,S

′
i)←

SuperSamp(1n, 1m, q,Ai,1,−BT
i,0 ·Ai,2) which will satisfy

BT
i,−1 ·Ai,1 + BT

i,0 ·Ai,2 = 0 mod q,

22



as desired. Finally, B re-randomizes each S′i as Si ← RandBasis(S′i) for i = 0 to `. We observe that B notably
departs from the real key generation algorithm in that Bi,1 is generated from Ai,2 (whereas Keygen proceeds
the other way around at step 2) using SuperSamp. However, by Lemma 4 in [26], the distribution of the resulting
matrices is statistically the same either way.

The group public key gpk =
(
A, {Ai, (Bi,−1,Bi,0,Bi,1)}`i=0

)
is finally given to A. As in the proof of Theorem

3, for each j 6= j?, we have

Aidj =

[
Ā

A0 +
∑`
i=1 idj [i]Ai

]
=

[
Ā

(Q0 +
∑`
i=1 idj [i]Qi) · Ā + hidj ·C

]
∈ Z2m×n

q ,

where hidj ∈ [1, `] denotes the Hamming distance between idj and idj? . As in the proof of Theorem 3, for each

identifier idj 6= idj? , B is able to compute a basis T′idj of Λ⊥q (Aidj ) with ‖T̃′idj‖ ≤ ω(
√

2mn log q log n) from the

basis TC of Λ⊥q (C). The obtained bases {T′idj}idj 6=idj? are then re-rerandomized as

Tidj
← RandBasis(T′idj , ω(

√
2mn log q log n)). However, the reduction B is unable to compute a trapdoor for the

matrix Aidj? corresponding to the expected target group member j?. Fortunately, B can derive a trapdoor Tidj

for each j 6= j?.
Since the rows of each Qk are sampled from DZm,ω(

√
logn), the matrices A0, . . . ,A` ∈ Z2m×n

q have a dis-

tribution which is statistically close to that of independent and uniformly random matrices over Z2m×n
q , which

are also statistically independent of A. Also, by Lemma 3, the distribution of {Tidj}j 6=j? is statistically close
to that of the real system.

• If coin = 1, the reduction B chooses i? ←↩ U([1, `]) and defines Â to be the matrix Ai? ∈ Z2m×n
q

that will be part of gpk. It runs TrapGen(1n, 1m, q) to obtain A ∈ Zm×nq with a basis TA of Λ⊥q (A) such

that ‖T̃A‖ ≤ O(
√
n log q). Next, it independently samples A0, . . . ,Ai?−1,Ai?+1, . . . ,A` ←↩ U(Z2m×n

q ) and

sets Ai? = Â. Finally, B computes {(Bi,−1,Bi,0,Bi,1)}`i=0 in the same way as in the case coin = 0. As
in the previous case, B thus knows a trapdoor Si for Bi,−1 for each i ∈ {0, . . . , `}. The group public key
gpk =

(
A, {Ai, (Bi,−1,Bi,0,Bi,1)}`i=0

)
, which is distributed (statistically) as in the real system, is given as

input to A. Using TA, the reduction B is able to compute a delegated basis Tidj for all users j ∈ [0, N − 1]
exactly as in the real scheme.

Regardless of the value of coin ∈ {0, 1}, the adversary A is run on input of gmsk := {Si}`i=0 and gpk :=(
A, {Ai, (Bi,−1,Bi,0,Bi,1)}`i=0, H, Π

ots, p
)
.

Queries. Algorithm B starts interacting with adversary A whose queries are handled in a way that depends on
coin ∈ {0, 1}.
• If coin = 0, B aborts if A ever queries the private key gsk[j?] of user j?. When A queries a private key gsk[j] for
j ∈ {0, . . . , N−1}\{j?}, B reveals the previously computed short basis Tidj . When A queries the signing oracle,
B faithfully runs the signing algorithm whenever the involved user j is not j?. For each signing query involving
the expected target user j?, B samples x2 ←↩ DZ2m,σ and s0, s←↩ U(Znq ). Then, it computes c0 = B0 · s0 + x2

as well as ci = Bi,VK · s + p · [ei|ei · Ri] + idj? [i?] · x2 for each i ∈ [1, `]. The proof π0 is computed as a real
proof (i.e., using the witness x2), whereas all other non-interactive proofs {πOR,i}`i=1 and πK are simulated
using the appropriate NIZK simulator, by programming the random oracle. Since the simulator is statistically
zero-knowledge, the resulting signature Σ will be statistically indistinguishable from a real signature.

• If coin = 1, B has all private keys {gsk[j]}N−1j=0 at disposal since it knows TA. It can thus perfectly answer
A’s queries by running the actual signing algorithm or returning the queried private keys gsk[j].

For each coin ∈ {0, 1}, queries to the random oracle H are handled by returning a uniformly chosen value in
{0, 1}t. For each κ ∈ {1, . . . , qH}, rκ will stand for the answer to the κ-th H-query. As usual, if a given random
oracle query occurs more than once, B responds by returning the previously defined value.

Forgery. Eventually, A outputs a signature Σ? =
(
c?0, c

?
1, . . . , c

?
` , π

?
0 , π

?
OR,1, . . . , π

?
OR,`, π

?
K

)
on some message

M? with probability ε. If we parse the proof of knowledge π?K as (Comm?
K ,Chall

?
K ,Resp

?
K), w.h.p., A must have
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queried H on the input (M?,Comm?
K , c

?
0, c

?
1, . . . , c

?
` , π

?
0 , π

?
OR,1, . . . , π

?
OR,`). Indeed, otherwise, the probability to

have Chall?K = H(M?,Comm?
K , c

?
0, c

?
1, . . . , c

?
` , π

?
0 , π

?
OR,1, . . . , π

?
OR,`) is at most 1/2t. With probability ε − 1/2t,

the tuple (M?,Comm?
K , c

?
0, c

?
1, . . . , c

?
` , π

?
0 , π

?
OR,1, . . . , π

?
OR,`) was the input of the κ-th random oracle query for

some κ? ∈ {1, . . . , qH}.
Now, B starts a second execution of the adversary A with the same random tape and input as in the first run.

All queries are answered as in the latter with a difference in the treatment of random oracle queries. Namely,
the first κ?− 1 hash queries – which are necessarily the same as in the first execution because A’s random tape
has not changed – receive the same answers r1, . . . , rκ?−1 as in the first run. Consequently, the κ?-th query will
involve the tuple (M?,Comm?

K , c
?
0, c

?
1, . . . , c

?
` , π

?
0 , π

?
OR,1, . . . , π

?
OR,`) as in the first execution. However, a forking

occurs as, from this point forward, A obtains fresh random oracle values r′κ? , . . . , r
′
qH which are independent

of the subsequence of answers in the first execution. The General Forking Lemma of Bellare and Neven [6]

implies that, with probability at least
(
ε − 1

2t

)(
ε−1/2t
qH

− 1
2t

)
, it holds that: (1) A’s forgery also pertains to

(M?,Comm?
K , c

?
0, c

?
1, . . . , c

?
` , π

?
0 , π

?
OR,1, . . . , π

?
OR,`) in the second run; (2) we also have r′κ? 6= rκ? . Hence, using

the knowledge extractor of the proof of knowledge π?K , B extracts vectors e1, . . . , e` ∈ DZ2m,αq and x1 ∈ Zm,
y1, . . . ,y` ∈ Z2m satisfying

xT1 A +
∑̀
i=0

cTi Ai =
∑̀
i=1

eTi
(
p ·Ai

)
and eTi

(
p ·Ai

)
+ yTi Ai = cTi Ai, for i ∈ {1, . . . , `} (7)

with ||x1|| ≤ σ
√
m and ||yi|| ≤ σ

√
2m for each i ∈ {1, . . . , `}.

The reduction B then opens either of the two forgeries using {Si}`i=0 (note that both signatures necessarily
open to the same identity id as they involve the same {c?i }`i=1). At this point, B aborts and declares failure
if the opening does not unveil user j?’s identity. Still, with probability at least 1/N , B’s was fortunate in its
random choice for j? and the opening algorithm reveals idj? .

If this desirable event occurs, B considers the following situations.

- If yi = idj? [i] ·x2 for each i ∈ {1, . . . , `}, where x2 ∈ Z2m is the vector encrypted by c?0, B aborts if coin = 1.
Otherwise, relations (7) guarantee that

xT1 ·A + cT0 ·A0 +
∑̀
i=1

idj? [i] · xT2 ·Ai = xT1 ·A + xT2 ·A0 +
∑̀
i=1

idj? [i] · xT2 ·Ai

= (xT1 |xT2 ) ·
[

A

A0 +
∑`
i=1 idj? [i] ·Ai

]
= (xT1 |xT2 ) ·

[
Ā

(Q0 +
∑`
i=1 idj? [i]Qi) · Ā

]
= 0 mod q,

where the first equality follows from the fact that BT
0 ·A0 = 0 mod q and c?0 is of the form c?0 = B0 · s0 +x2.

This implies that v = x1 + x2 ·
(
Q0 +

∑`
i=1 idj? [i]Qi

)
is a vector of Λ⊥(Ā). A similar analysis to [10] shows

that v is both short and non-zero with overwhelming probability. As a consequence, B outputs (x2 0m)T

which is a short non-zero vector such that (x2 0m)T · Â = 0 mod q.

- If there exists i ∈ {1, . . . , `} such that yi 6= idj? [i] ·x2, where x2 ∈ Z2m is the vector obtained by decrypting
c?0 using S0, then B aborts if coin = 0. Otherwise, the non-interactive proofs {π?OR,i}i imply that c?i =

Bi · s + p · e′i + idj? [i] · x2 for some x2, e
′
1, . . . , e

′
` ∈ Z2m and s0, s ∈ Znq . By multiplying the latter expression

of c?i
T by Ai, we find

cTi ·Ai = p · (e′i
T ·Ai) + idj? [i] · xT2 Ai.

Subtracting the latter equation from the second equation of (7), we find(
p · (eTi − e′i

T
) + (yTi − idj? [i] · xT2 )

)
·Ai = 0 mod q.
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If p · (eTi −e′i
T

) + (yTi − idj? [i] ·x2T ) 6= 0 mod q, it is a short non-zero vector in Λ⊥(Ai). Given that Ai = Â
with probability 1/`, we solved the given SIS instance with the same probability. Finally, if

p · (eTi − e′i
T

) + (yTi − idj? [i] · xT2 ) = 0 mod q,

the relative lengths of vectors ei, e
′
i,yi,x2 with respect to p implies ei = e′i and yi = idj? [i] · x2, which

contradicts the assumption that yi 6= idj? [i] · x2.

The lower bound on the reduction’s probability of success is assessed exactly in the same way as in the proof of
Theorem 3. ut

25


