
Worst Cases for the Exponential Function in the
IEEE 754r decimal64 Format

Vincent Lefèvre1 and Damien Stehlé2? and Paul Zimmermann1

1 LORIA/INRIA Lorraine, Bâtiment A, Technopôle de Nancy-Brabois,
615 rue du jardin botanique, F-54602 Villers-lès-Nancy Cedex, France

Vincent.Lefevre@inria.fr,Paul.Zimmermann@loria.fr
2 LORIA/Université Nancy 1, Bâtiment A, Technopôle de Nancy-Brabois,

615 rue du jardin botanique, F-54602 Villers-lès-Nancy Cedex, France
stehle@maths.usyd.edu.au

Abstract. We searched for the worst cases for correct rounding of the
exponential function in the IEEE 754r decimal64 format, and computed
all the bad cases whose distance from a breakpoint (for all rounding
modes) is less than 10−15 ulp, and we give the worst ones. In partic-
ular, the worst case for |x| ≥ 3 × 10−11 is exp(9.407822313572878 ×
10−2) = 1.098645682066338 5 0000000000000000 278 This work can
be extended to other elementary functions in the decimal64 format and
allows the design of reasonably fast routines that will evaluate these
functions with correct rounding, at least in some domains.

1 Introduction

Most computers nowadays support the IEEE 754-1985 standard for binary
floating-point arithmetic [1], which requires that all four arithmetic operations
(+, −, ×, ÷) and the square root are correctly rounded. However radix 10 is
more suited to some applications, such as financial and commercial ones, and
there have been propositions to normalize it as well and also design hardware
implementations. The IEEE 854-1987 standard for radix-independent floating-
point arithmetic [2] has been a first step in this direction, but this standard just
gives some constraints on the value sets and is not even specific to radix 10. The
article [3] describes a first specification of a decimal floating-point arithmetic; it
has been improved and the specification included in the current working draft
of the revision of the IEEE 754 standard (754r) is described in [4].

One also seeks to extend the IEEE 754 standard to elementary functions,
such as the exponential, logarithm and trigonometric functions, by requiring
correct rounding on these functions too. Unfortunately fulfilling this requirement
is much more complicated than with the basic operations. Indeed, while efficient
algorithms to guarantee the correct rounding are known for the basic operations,
the only known way to evaluate f(x), where f is an elementary function and

? Hosted and partially funded by the MAGMA group, within the University of Sydney.

x is a machine number3, is to compute an approximation to f(x) without any
useful knowledge except an error bound; and the exact result f(x) may be very
close to a machine number or to the middle of two consecutive machine numbers
(which are the discontinuity points of the rounding functions), in which case
correct rounding can be guaranteed only if the error on the approximation is
small enough. This problem is known as the Table Maker’s Dilemma (TMD).
Some cases can be decided easily, but the only known way to obtain a bound
on the acceptable error for any input value is to perform an exhaustive search
(with a 64-bit format, as considered below, there are at most 264 possible input
values). The arguments x for which the values f(x) are the hardest to round are
called worst cases.

Systematic work on the TMD in radix 2 was first done by Lefèvre and
Muller [5], who published worst cases for many elementary functions in double
precision, over the full IEEE 754 range for some functions. And correct round-
ing requirements for some functions in some domains have been added to the
754r working draft. Improved algorithms to deal with higher precisions are given
in [6], and in the present paper, the practical feasibility of the method for decimal
formats is demonstrated. Indeed the worst cases depend on the representation
(radix and precision) and the mathematical function.

Section 2 describes the decimal formats, how worst cases are expressed and
briefly recalls the algorithms (in the decimal context) to search for these worst
cases. Section 3 gives all worst cases of the exponential function in the 64-bit
decimal format. These results allow us to give Theorem 1.

Theorem 1. In the IEEE 754r decimal64 format, among all the finite values
|x| ≥ 3 × 10−11 such that exp(x) does not yield an exception, the input x such
that exp(x) is nearest from a breakpoint, both for rounding-to-nearest and directed
rounding modes, is 9.407822313572878×10−2, and for this input, the exact value
of exp(x) is:

1.098645682066338︸ ︷︷ ︸
16 digits

50000000000000000︸ ︷︷ ︸
17 digits

278

Among all finite values x such that exp(x) does not yield an exception and
exp(x) /∈ [1 − 10−16/2, 1 + 10−15/2], the input x such that exp(x) is nearest
from a breakpoint is 9.999999999999995 × 10−16, and for this input, the exact
value of exp(x) is:

1.000000000000000︸ ︷︷ ︸
16 digits

99999 . . . 99999︸ ︷︷ ︸
30 digits

666

2 The Table Maker’s Dilemma in Decimal

In this section, the decimal formats are described in Section 2.1, then the general
form of worst cases is given, along with a few illustrating examples (Section 2.2).
3 A number that is exactly representable in the floating-point system.

Finally, the algorithms to search for these worst cases are briefly recalled and
applied to radix 10 (Section 2.3).

2.1 The Decimal Formats

As specified by the IEEE 854 standard [2], a non-special4 decimal floating-point
number x in precision n has the form:

x = (−1)s 10E d0.d1d2 . . . dn−1

where s ∈ {0, 1}, the exponent E is an integer between two given integers Emin

and Emax, and the mantissa d0.d1d2 . . . dn−1 is a fixed-point number written in
radix 10; i.e., for i between 0 and n− 1, one has: 0 ≤ di ≤ 9.

As d0 may be equal to 0, some numbers have several representations and the
standard does not distinguish them. Without changing the value set, one can
require that if E 6= Emin, then d0 6= 0, and this will be done in the following for
the sake of simplicity. A number such that d0 6= 0 is called a normal number,
and a number such that d0 = 0 (in which case E = Emin) is called a subnormal
number. In this way, the representation of a floating-point number is uniquely
defined.

Below ulp(x) denotes the weight of the digit dn−1 in this unique representa-
tion; i.e., ulp(x) = 10E−n+1.

The document [4], based on the IEEE 854 standard, defines three decimal
formats, whose parameters are given in Table 1: decimal32, decimal64 and deci-
mal128, with an encoding on 32, 64 and 128 bits respectively. This specification
has been included in the 754r working draft.

Table 1. The parameters of the three 754r decimal formats.

Format decimal32 decimal64 decimal128

Precision n (digits) 7 16 34

Emin −95 −383 −6143

Emax 96 384 6144

2.2 The Bad and Worst Cases

Given a floating-point format, let us call a breakpoint a value where the rounding
changes in one of the rounding modes, i.e., a discontinuity point of the rounding
functions. A breakpoint is either a machine number (for the directed rounding

4 The special floating-point numbers are not-a-number (NaN), the positive and nega-
tive infinities, and the positive and negative zeros.

modes) or the middle of two consecutive machine numbers (for the rounding-to-
nearest mode).

For a given function f and a “small” positive number ε, a machine number x
is a bad case when the distance between the exact value of f(x) and the nearest
breakpoint(s) is less than ε · ulp(f(x)). For instance, if f is the exponential
function in the decimal64 format (n = 16 digits), then the machine numbers
0.5091077534282133 and 0.7906867968553504 are bad cases for ε = 10−16, since
for these values, exp(x) is close enough to the middle of two consecutive machine
numbers:

exp(0.5091077534282133) = 1.663806007261509︸ ︷︷ ︸
16 digits

5000000000000000︸ ︷︷ ︸
16 digits

49 . . .

and

exp(0.7906867968553504) = 2.204910231771509︸ ︷︷ ︸
16 digits

4999999999999999︸ ︷︷ ︸
16 digits

16 . . . ,

i.e., rounding exp(x) in the rounding-to-nearest mode requires to evaluate exp(x)
in a precision significantly higher than the target precision. Similarly, with the
following bad cases, exp(x) is very close to a machine number, so that rounding it
in directed rounding modes also requires to evaluate it in a precision significantly
higher than the target precision:

exp(0.001548443067391468) = 1.001549642524374︸ ︷︷ ︸
16 digits

9999999999999999︸ ︷︷ ︸
16 digits

26 . . .

and

exp(0.2953379504777270) = 1.343580345589067︸ ︷︷ ︸
16 digits

0000000000000000︸ ︷︷ ︸
16 digits

86

2.3 Searching for Bad and Worst Cases

Searching for bad cases in decimal is very similar to the search in binary. First
the domain of the tested function is selected: arguments that give an underflow
or an overflow are not tested, and some other arguments do not need to be
tested either when a simple reasoning can be carried out (see Section 3.1 as an
example). And like in binary [7–9], probabilistic hypotheses allow us to guess
that the smallest distance amongst all the arguments to be tested is of the order
of 10−n ulp (divided by the number of exponents E), so that we can choose
ε ∼ 10−n to get only a few bad cases5; i.e., we search for bad cases with at least
5 This may not be true in some domains, for instance when the function can be approx-

imated accurately by a simple degree-2 polynomial, such as exp(x) ' 1+x+x2/2 for
x sufficiently close to 0; in this case, one can get bad cases which are much closer to
breakpoints and more numerous than what can be estimated with the probabilistic
hypotheses. This is not a problem in practice: A simple reasoning is usually sufficient
instead of an exhaustive search in this domain.

n (or n− 1) identical digits 0 or 9 (possibly except the first one, which may be
respectively 5 or 4) after the n-digit mantissa.

In the decimal32 format, the number of arguments to be tested is small
enough for a naive algorithm to be sufficient: for each argument x, one com-
putes f(x) in a higher precision to eliminate the values x for which the distance
between f(x) and the nearest breakpoint(s) is larger than ε · ulp(f(x)). Since
finding bad cases is rather easy for the decimal32 format, this paper will not fo-
cus on this format; the reader may find some results for the exponential function
at http://www.loria.fr/~zimmerma/wc/decimal32.html.

In the decimal64 format, the number of remaining arguments after reducing
the domain is still very large (say, around 1017 to 1019, depending on the func-
tion), and a naive algorithm would require several centuries of computations.
Like in the binary double precision, one needs specific algorithms, and since the
decimal arithmetic has the same important properties as the binary one (the
machine numbers are in arithmetic progression except at exponent changes, the
breakpoints have a similar form. . .), the same methods can be applied.

In radix 2, bad cases for precision n and any rounding mode are the same as
bad cases for precision n+1 and directed rounding modes6, so that the problem
was restricted to directed rounding modes in [6]. This property is no longer true
in radix 10, but the breakpoints are still in an arithmetic progression (except
when the exponent changes, just like in radix 2), which is the only important
property used by our algorithms. Indeed in each domain where the exponent
of f(x) does not change, one needs to search for the solutions of:

|f(x) mod (u/2)| < εu ,

where u = ulp(f(x)), which is a constant in the considered domain.
To solve this problem, one splits the domain into subintervals, and in each

subinterval, one approximates the function f by a polynomial P of small degree
and scales/translates the input and output values to reduce the problem to the
following (as in the binary case [6]):
Real Small Value Problem (Real SValP). Given positive integers M and
T , and a polynomial P with real coefficients, find all integers |t| < T such that:

|P (t) mod 1| < 1
M

. (1)

The coefficients of the polynomial are computed using the MPFR library [10]
in order to obtain guaranteed error bounds.

Then several fast algorithms can be used to solve the Real SValP. Lefèvre’s al-
gorithm needs degree-1 polynomial approximations; as these approximations are
valid on very small intervals, one also needs a way to determine these approxima-
tions very quickly [11]. The Stehlé-Lefèvre-Zimmermann (SLZ) algorithm allows
to have polynomials of higher degrees and has a smaller asymptotic complex-
ity [6], but with a high constant factor. It is based on Coppersmith’s technique to
6 Said otherwise, in radix 2, the breakpoints for precision n and all rounding modes

are the machine numbers in precision n + 1.

find the small roots of multivariate polynomials modulo an integer: informally,
in our situation, we look for small roots of P (x) + y modulo 1. Coppersmith’s
technique was first introduced in a cryptographic context [12], and heavily relies
on the LLL algorithm for reducing Euclidean lattice bases [13]. Heuristically,
LLL takes as input a basis derived from the multivariate polynomial and its
powers: this basis contains the information we are interested in (the roots of the
initial polynomial), but in an inconvenient way (there is no known way to effi-
ciently compute roots modulo an arbitrary integer). LLL outputs a basis made of
shorter vectors. In particular, if all the various parameters are chosen adequately,
the first output vectors will be short enough to ensure that the corresponding
polynomials contain among their roots (over the integers, without the modulus)
the roots of the initial polynomial.

In order to make the implementation of the SLZ algorithm as efficient as
possible, it is crucial to use an efficient LLL code. For instance, one should avoid
using the text-book LLL algorithm making use of a rational arithmetic. In the
implementation of the SLZ algorithm, it is better to use variants of the LLL
algorithm relying on floating-point arithmetic rather than rational arithmetic
within the Gram-Schmidt computations (central in LLL).

In his PhD thesis [14], Stehlé describes three floating-point variants of LLL,
respectively called “fast”, “heuristic” and “proved”. The corresponding codes are
available at http://www.loria.fr/~stehle/. The proved variant implements
the algorithm described in [15], whereas the other two can fail7 but are usually
more efficient.

Remark 1. The above methods may no longer work well for the smallest subnor-
mals, due to the loss of precision for these numbers. For instance, a low-degree
polynomial approximation may be valid on an interval that contains only very
few machine numbers. Nevertheless these few values may be tested separately
with a naive algorithm, if need be.

3 The Exponential Function

We now show the feasibility of our method on the exponential function, denoted
exp, in the decimal64 format. This is just an example: a similar work can be car-
ried out for other functions. After a simple analysis of the function (Section 3.1),
we search for bad cases (Section 3.2).

3.1 Correctly Rounding the Exponential Function

Let us first recall the parameters of the decimal64 format, with a few more
details. A non-special floating-point number x has the form:

x = (−1)s 10E d0.d1d2 . . . d15

7 In practice, when they fail, they loop forever; they may also return a badly-reduced
basis. But in both situations, no bad case will be missed.

where s ∈ {0, 1} and −383 ≤ E ≤ 384. So, the largest finite machine number is
10385 − 10369, the smallest positive normal machine number is 10−383 and the
smallest positive machine number is 10−398.

Now let us briefly analyze the exponential function, assuming that the argu-
ment is a finite number, to eliminate the special cases. The exponential function
is mathematically defined on the whole domain of real numbers, so that the value
will never be a NaN. It is increasing, with exp(x) → +∞ when x → +∞, and
exp(x) → 0 when x → −∞. And the mathematical properties of the exponential
function are such that there will be an overflow when x is larger than some value
and an underflow when x is smaller than some value. Moreover, exp(0) = 1,
meaning that for values of x close to 0, the rounding of exp(x) is determined
only by the rounding mode and the sign of x.

So, there are four couples of consecutive machine numbers (a−, a+), (b−, b+),
(c−, c+) and (d−, d+) that determine the following five intervals:

−∞ . . . a−︸ ︷︷ ︸
+0

a+ . . . b−︸ ︷︷ ︸
search

b+ . . . c−︸ ︷︷ ︸
1

c+ . . . d−︸ ︷︷ ︸
search

d+ . . . +∞︸ ︷︷ ︸
+∞

where in intervals 1, 3 and 5, the rounded values in the rounding-to-nearest mode
are respectively +0, 1 and +∞ (the rounded values in the directed rounding
modes can also be determined, keeping the same interval bounds for the sake
of simplicity), and in intervals 2 and 4, a search for bad cases is needed. These
interval bounds are determined below.

An argument x generates an overflow when the rounded result obtained as-
suming an unbounded exponent range exceeds the largest finite machine number
10385 − 10369. One has:

log(10385 − 10369/2) = 886.4952608027075︸ ︷︷ ︸
16 digits

882469 . . . ,

so that one gets an overflow if and only if x ≥ d+, with d+ = 886.4952608027076
(x being a machine number).

Concerning a−, one has:

log(10−398/2) = − 917.1220141921901︸ ︷︷ ︸
16 digits

2 . . . ,

so that in any rounding mode, exp(x) is rounded to the same value for any
x ≤ a−, with a− = −917.1220141921902: It is rounded to 10−398 in the rounding
to +∞ mode, and +0 in the other rounding modes.

Concerning b+ and c−, one has:

log(1− 10−16/2) = − 5.000000000000000︸ ︷︷ ︸
16 digits

125 . . .× 10−17

and
log(1 + 10−15/2) = 4.999999999999998︸ ︷︷ ︸

16 digits

750 . . .× 10−16 ,

so that one chooses b+ = −5× 10−17 and c− = 4.999999999999998× 10−16.
Finally, in the other domains, that is for x in

[a+, b−] = [−917.1220141921901,−5.000000000000001× 10−17]

and in

[c+, d−] = [4.999999999999999× 10−16, 886.4952608027075] ,

a search for bad cases needs to be done to be able to round exp(x) correctly in
any rounding mode.

Remark 2. When x is close enough to 0, one could use the approximation
exp(x) ' 1 + x + x2/2 to find bad cases with much less computing time in
this domain. But globally, one would gain very little since this is an easy domain
(as the error on a polynomial approximation is very small compared to higher
values of x, and the algorithms work much better).

3.2 Searching for Bad and Worst Cases of the Exponential Function

To search for bad cases, one first splits the tested domain into intervals in which
both the argument x and the result exp(x) have a constant (possibly different)
exponent. This has been done with a small Maple program.

As said in [11] and [5], one could test the inverse function, i.e., the logarithm,
instead of the exponential when x is small enough (say, |x| < 1). The reason
is that there are fewer machine numbers to test in this domain for the inverse
function. However this domain requires very little computation time compared
to those with high values of x.

The search for bad cases was performed with BaCSeL8, running on a few
machines. The chosen parameters were: a working precision of 200 bits, m = 14.6
(the quality of the bad cases, i.e., − log10(2ε), to get all bad cases for ε = 10−15),
t = 5.5 (a parameter that fixes the size of the sub-intervals), d = 3 (the degree
of the polynomials) and α = 2 (a parameter for Coppersmith’s technique). For
values of x close enough to 0, the fast LLL variant fails, so that the proved
variant is used in this domain.

Tables 2 and 3 present all the bad cases for x ≥ 10−9 and for x ≤ −10−10

respectively, whose distance from a breakpoint is less than 5× 10−17 ulp.
For −10−9 < x < 10−8 (and in particular for the smaller domain −10−10 <

x < 10−9), many bad cases have some patterns in their mantissa. For instance,
one has the following bad cases with ε = 3 × 10−15 (look at the 8th, 9th and
10th digits):

3.897940992403028× 10−9 ,
4.230932991049603× 10−9 ,
4.291382990792016× 10−9 ,
4.581289989505891× 10−9 .

8 Available on http://www.loria.fr/~stehle/.

Table 2. All worst cases of the decimal64 exponential function for x ≥ 10−9, whose
distance from a breakpoint is less than 5× 10−17 ulp. The notation dk means that the
digit d is repeated k times.

x exp(x)

6.581539478341669× 10−9 1.000000006581539 5 015 177 . . .

2.662858264545929× 10−8 1.000000026628583 0 015 318 . . .

3.639588333766983× 10−8 1.000000036395884 0 015 240 . . .

6.036998017773271× 10−8 1.000000060369982 0 015 379 . . .

6.638670361402304× 10−7 1.000000663867256 4 915 569 . . .

9.366572213364879× 10−7 1.000000936657659 9 915 883 . . .

7.970613003079781× 10−6 1.000007970644768 5 015 362 . . .

3.089765552852523× 10−5 1.000030898132866 0 015 241 . . .

1.302531956641873× 10−4 1.000130261678980 0 016 798 . . .

2.241856702421245× 10−4 1.000224210801727 5 015 118 . . .

7.230293679121590× 10−4 1.000723290816653 4 916 127 . . .

5.259640428979129× 10−3 1.005273496619909 4 915 739 . . .

9.407822313572878× 10−2 1.098645682066338 5 016 278 . . .

1.267914924960933× 10−1 1.135180299492843 0 016 706 . . .

5.091077534282133× 10−1 1.663806007261509 5 015 492 . . .

3.359104074009002 28.76340944572687 5 016 904 . . .

19.10511686234796 1.982653538414981 9 915 735 . . .× 108

294.9551257293143 1.251363586659789 5 015 108 . . .× 10128

587.9131381356093 2.125356221825522 4 915 594 . . .× 10255

Table 3. All worst cases of the decimal64 exponential function for x ≤ −10−10, whose
distance from a breakpoint is less than 5× 10−17 ulp. The notation dk means that the
digit d is repeated k times.

x exp(x)

− 2.090862502185853× 10−9 0.9999999979091375 0 015 371 . . .

− 3.803619857233762× 10−9 0.9999999961963801 4 915 841 . . .

− 7.170496225708008× 10−9 0.9999999928295038 0 015 252 . . .

− 9.362256793825926× 10−9 0.9999999906377432 4 915 580 . . .

− 4.024416580979643× 10−8 0.9999999597558350 0 015 308 . . .

− 6.306378165019860× 10−7 0.9999993693623823 5 015 301 . . .

− 7.720146779532548× 10−7 0.9999992279856200 4 915 612 . . .

− 9.753167969712726× 10−7 0.9999990246836786 4 916 120 . . .

− 5.911964024384330× 10−5 0.9999408821072876 5 015 384 . . .

− 8.232272117182855× 10−5 0.9999176806672504 0 015 312 . . .

− 8.232461306131942× 10−5 0.9999176787755166 4 915 555 . . .

− 8.496743395712491× 10−2 0.9185421971989605 4 915 843 . . .

− 9.250971335383380× 10−2 0.9116403558361098 9 915 563 . . .

− 9.337621398029658× 10−2 0.9108507610382665 0 015 400 . . .

− 9.341228128742237× 10−2 0.9108179096965556 4 916 587 . . .

− 9.998733949173545× 10−2 0.9048488738100865 0 015 330 . . .

− 1.452866822458144 0.2338987797314129 0 015 413 . . .

− 5.085363904672046 6.186635335115975 4 915 774 . . .× 10−3

− 5.815903811599861 2.979785944945804 5 015 173 . . .× 10−3

− 11.93382527979436 6.564558652611456 9 915 658 . . .× 10−6

− 46.84177248885496 4.538127418220535 9 915 769 . . .× 10−21

− 84.88822783213444 1.359912838893469 5 015 266 . . .× 10−37

− 495.9839910528425 3.952661043031169 5 015 371 . . .× 10−216

− 524.2585830842744 2.076778963867845 0 015 287 . . .× 10−228

This comes from the fact that exp(x) can be approximated by 1+x+x2/2+x3/6
in these domains, and even by 1+x+x2/2 for smaller values of x. Tables 4 and 5
give some other bad cases for c+ ≤ x < 10−9 and −10−10 < x ≤ b− respectively.

Table 4. Some bad cases of the exponential function in the decimal64 format, for
c+ = 4.999999999999999× 10−16 ≤ x < 10−9. At most two bad cases (the worst ones)
are given per exponent.

x exp(x)

6.000119998199928× 10−10 1.000000000600011 9 916 567 . . .

5.999879998200072× 10−10 1.000000000599988 0 016 431 . . .

1.039999999994592× 10−11 1.000000000010399 9 917 625 . . .

1.019999999994798× 10−11 1.000000000010199 9 917 646 . . .

1.199999999999280× 10−12 1.000000000001199 9 920 423 . . .

1.099999999999395× 10−12 1.000000000001099 9 920 556 . . .

1.399999999999902× 10−13 1.000000000000139 9 923 085 . . .

1.199999999999928× 10−13 1.000000000000119 9 923 423 . . .

2.999999999999955× 10−14 1.000000000000029 9 925 099 . . .

1.999999999999980× 10−14 1.000000000000019 9 925 733 . . .

3.999999999999992× 10−15 1.000000000000003 9 927 786 . . .

1.999999999999998× 10−15 1.000000000000001 9 928 733 . . .

9.999999999999995× 10−16 1.000000000000000 9 929 666 . . .

The complete list of all worst cases which are at a distance less than
10−15 ulp from a breakpoint is available at http://www.loria.fr/~zimmerma/
wc/decimal64.html.

4 Conclusion

Like in binary arithmetic, correct rounding can be guaranteed in decimal arith-
metic at a reasonable cost if the upper bound on the necessary precision for
the intermediate computations is determined. This requires exhaustive tests on
the whole input domain. While some subdomains can easily be handled, a large
number of input values need to be tested.

For the 754r decimal32 format, the tests can be carried out with naive algo-
rithms. However, for the 754r decimal64 format, specific algorithms needed to
be designed and implemented. The complete results for the exponential function
have been given in this paper. The worst case for |x| ≥ 3 × 10−11 (i.e., if we

Table 5. Some bad cases of the exponential function in the decimal64 format, for
−10−10 < x ≤ b− = −5.000000000000001 × 10−17. At most two bad cases (the worst
ones) are given per exponent.

x exp(x)

− 1.020000000005202× 10−11 0.9999999999898000 0 016 353 . . .

− 1.000000000005000× 10−11 0.9999999999900000 0 016 333 . . .

− 1.100000000000605× 10−12 0.9999999999989000 0 019 443 . . .

− 1.000000000000500× 10−12 0.9999999999990000 0 019 333 . . .

− 1.200000000000072× 10−13 0.9999999999998800 0 022 575 . . .

− 1.000000000000050× 10−13 0.9999999999999000 0 022 333 . . .

− 2.000000000000020× 10−14 0.9999999999999800 0 024 266 . . .

− 1.000000000000005× 10−14 0.9999999999999900 0 025 333 . . .

− 4.000000000000008× 10−15 0.9999999999999960 0 026 213 . . .

− 2.000000000000002× 10−15 0.9999999999999980 0 027 266 . . .

disregard very small values) is

exp(9.407822313572878× 10−2)
= 1.098645682066338︸ ︷︷ ︸

16 digits

50000000000000000︸ ︷︷ ︸
17 digits

278 . . . ,

meaning that a faithful approximation to 34 digits, which corresponds to the
decimal128 format, would be enough to guarantee correct rounding for the ex-
ponential in the decimal64 format in this domain. For the smaller values of x,
the worst case is

exp(9.999999999999995× 10−16) = 1.000000000000000︸ ︷︷ ︸
16 digits

999 . . . 999︸ ︷︷ ︸
30 digits

666 . . . ,

so that a faithful approximation to exp(x) − 1, also known as expm1(x), in
the decimal128 format would be enough to guarantee correct rounding for the
exponential in the decimal64 format in this domain.

Ziv’s strategy [16] can be used to evaluate the decimal64 exponential function;
it consists in carrying out the computations in a small precision (e.g., 22 digits)
first, and increasing the precision only in the very unlikely case where the correct
rounding cannot be decided. The results presented in this paper can be used
to implement Ziv’s strategy in an efficient way and prove that the algorithm
terminates within limited time and memory.

Other elementary functions could be tested as well, with the same algorithms.
As a consequence, standards could recommend (or even require) correct rounding
for these functions in these formats.

The implementation is still being improved, to speed up the tests. But for
the same reasons as in radix 2, some functions are still out of reach in some

domains, like the trigonometric functions for large arguments. In such a case, a
standard could recommend correct rounding for such functions only in a limited
domain, until new algorithms are designed and implemented to deal with large
arguments.

Acknowledgements

The writing of this paper was completed while the second author was visiting the
University of Sydney, whose hospitality is gratefully acknowledged. In particular,
part of the computations described in the present article was performed on the
machines of the MAGMA team.

The computations were also partly performed on machines of the Laboratoire
de l’Informatique du Parallélisme (at the École Normale Supérieure de Lyon,
France).

The third author acknowledges the support from the Schloss Dagstuhl Inter-
national Conference and Research Center for Computer Science, in particular the
Dagstuhl Seminar 06021 Reliable Implementation of Real Number Algorithms:
Theory and Practice, which stimulated the writing of this article.

The authors also thank the anonymous reviewers for their helpful comments.

References

1. IEEE: IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard
754-1985. Institute of Electrical and Electronics Engineers, New York (1985)

2. IEEE: IEEE Standard for Radix-Independent Floating-Point Arithmetic,
ANSI/IEEE Standard 854-1987. Institute of Electrical and Electronics Engineers,
New York (1987)

3. Cowlishaw, M., Schwarz, E.M., Smith, R.M., Webb, C.F.: A decimal floating-
point specification. In Burgess, N., Ciminiera, L., eds.: Proceedings of the 15th
IEEE Symposium on Computer Arithmetic, Vail, Colorado, USA, IEEE Computer
Society Press, Los Alamitos, CA (2001) 147–154

4. Cowlishaw, M.: Decimal arithmetic encoding strawman 4d, draft version 0.96.
Report, IBM UK Laboratories, Hursley, UK (2003)

5. Lefèvre, V., Muller, J.M.: Worst cases for correct rounding of the elementary
functions in double precision. In Burgess, N., Ciminiera, L., eds.: Proceedings of the
15th IEEE Symposium on Computer Arithmetic, Vail, Colorado, IEEE Computer
Society Press, Los Alamitos, CA (2001) 111–118

6. Stehlé, D., Lefèvre, V., Zimmermann, P.: Searching worst cases of a one-variable
function using lattice reduction. IEEE Transactions on Computers 54(3) (2005)
340–346

7. Dunham, C.B.: Feasibility of“perfect” function evaluation. ACM Sigum Newsletter
25(4) (1990) 25–26

8. Gal, S., Bachelis, B.: An accurate elementary mathematical library for the IEEE
floating point standard. ACM Transactions on Mathematical Software 17(1) (1991)
26–45

9. Muller, J.M.: Elementary Functions, Algorithms and Implementation. Birkhauser,
Boston (1997)

10. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: A
multiple-precision binary floating-point library with correct rounding. Research
report RR-5753, INRIA (2005)

11. Lefèvre, V.: Moyens arithmétiques pour un calcul fiable. PhD thesis, École Normale
Supérieure de Lyon, Lyon, France (2000)

12. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology 10(4) (1997) 233–260

13. Lenstra, A.K., Lenstra, Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261 (1982) 513–534

14. Stehlé, D.: Algorithmique de la réduction de réseaux et application à la recherche
de pires cas pour l’arrondi de fonctions mathématiques. PhD thesis, Université
Henri Poincaré – Nancy 1, Nancy, France (2005)

15. Nguyen, P., Stehlé, D.: Floating-point LLL revisited. In: Proceedings of Eurocrypt
2005. Volume 3494 of Lecture Notes in Computer Science., Springer-Verlag (2005)
215–233

16. Ziv, A.: Fast evaluation of elementary mathematical functions with correctly
rounded last bit. ACM Transactions on Mathematical Software 17(3) (1991) 410–
423

