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Abstract. The security of lattice-based cryptosystems such as NTRU,
GGH and Ajtai-Dwork essentially relies upon the intractability of com-
puting a shortest non-zero lattice vector and a closest lattice vector to
a given target vector in high dimensions. The best algorithms for these
tasks are due to Kannan, and, though remarkably simple, their complex-
ity estimates have not been improved since over twenty years. Kannan’s
algorithm for solving the shortest vector problem (SVP) is in particu-
lar crucial in Schnorr’s celebrated block reduction algorithm, on which
rely the best known generic attacks against the lattice-based encryp-
tion schemes mentioned above. In this paper we improve the complexity
upper-bounds of Kannan’s algorithms. The analysis provides new insight
on the practical cost of solving SVP, and helps progressing towards pro-
viding meaningful key-sizes.

1 Introduction

A lattice L is a discrete subgroup of some R
n. Such an object can always

be represented as the set of integer linear combinations of at most n vec-
tors b1, . . . , bd. These vectors can be chosen linearly independent, and in
that case, we say that they are a basis of the lattice L. The most famous
algorithmic problem associated with lattices is the so-called shortest vec-
tor problem (SVP). Its computational variant is to find a non-zero lattice
vector of smallest Euclidean length — this length being the minimum λ(L)
of the lattice — given a basis of the lattice. Its decisional variant is known
to be NP-hard under randomised reductions [2], even if one only asks for
a vector whose length is no more than 2(log d)1−ε

times the length of a
shortest vector [12] (for any ε > 0).

SVP is of prime importance in cryptography since a now quite large
family of public-key cryptosystems relies more or less on it. The Ajtai-
Dwork cryptosystem [4] relies on dc-SVP for some c > 0, where f(d)-SVP
is the problem of finding the shortest non-zero vector in the lattice L,

? Work partially supported by CNRS GDR 2251 “Réseau de théorie des nombres”.
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under the promise that any vector of length less than f(d) · λ(L) is par-
allel to it. The GGH cryptosystem [11] relies on special instances of the
Closest Vector Problem (CVP), a non-homogeneous version of SVP. Both
the Ajtai-Dwork and GGH cryptosystems have been shown impractical
for real-life parameters [25, 23] (the initial GGH containing a major the-
oretical flaw as well). Finally, one strongly suspects that in NTRU [15]
the private key can be read on the coordinates of a shortest vector of the
Coppersmith-Shamir lattice [8]. The best known generic attacks against
these encryption schemes are based on solving SVP. It is therefore highly
important to know precisely what complexity is achievable, both in the-
ory and practice, in particular to select meaningful key-sizes. Most often,
for cryptanalysing lattice-based cryptosystems, one considers Schnorr’s
block-based algorithms [28, 30], such as BKZ. These algorithms internally
solve instances of SVP in much lower dimensions (related to the size of
the block). They help solving relaxed variants of SVP in high dimensions.
Increasing the dimensions up to which one can solve SVP helps decreasing
the relaxation factors that are achievable in higher dimensions. Solving
the instances of SVP is the computationally expensive part of the block-
based reduction algorithms.

Two main algorithms are known for solving SVP. The first one is
based on the deterministic exhaustive enumeration of lattice points within
a small convex body. It is known as Fincke-Pohst’s enumeration algo-
rithm [9] in the algorithmic number theory community. Cryptographers
know it as Kannan’s algorithm [16]. There are two main differences be-
tween both: firstly, in Kannan’s algorithm, a long pre-computation on the
basis is performed before starting the enumeration process; secondly, Kan-
nan enumerates integer points in a hyper-parallelepiped whereas Fincke
and Pohst consider an hyper-ellipsoid which is strictly contained in Kan-
nan’s hyper-parallelepiped – though Kannan may have chosen the hyper-
parallelepiped in order to simplify the complexity analysis. Kannan ob-
tained a dd+o(d) complexity bound (in the complexity bounds mentioned
in the introduction, there is an implicit factor that is polynomial in the
bit-size of the input). In 1985, Helfrich [13] refined Kannan’s analysis, and
obtained a dd/2+o(d) complexity bound. On the other hand, Ajtai, Kumar
and Sivakumar [5] designed a probabilistic algorithm of complexity 2O(d).
The best exponent constant is likely to be small, as suggested by some re-
cent progress [26]. A major drawback of this algorithm is that it requires
an exponential space, whereas Kannan’s requires a polynomial space.

Our main result is to lower Helfrich’s complexity bound on Kannan’s

algorithm, from d
d
2
+o(d) ≈ d0.5·d to d

d
2e

+o(d) ≈ d0.184·d+o(d). This may ex-
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plain why Kannan’s algorithm is tractable even in moderate dimensions.
Our analysis can also be adapted to Kannan’s algorithm for CVP: it de-
creases Helfrich’s complexity bound from dd+o(d) to dd/2+o(d). The com-
plexity improvement for SVP provides better worst-case efficiency/quality
trade-offs for Schnorr’s block-based algorithms [28, 30, 10].

It must be noted that if one follows our analysis step by step, the
derived o(d) may be large when evaluated for some practical d. The hidden
constants can be improved (for some of them it may be easy, for others it
is probably much harder). No attempt was made to improve them and we
believe that it would have complicated the proof with irrelevant details.
In fact, most of our analysis consists in estimating the number of lattice
points within convex bodies and showing that the approximations by the
volumes are almost valid. By replacing this discretisation by heuristic
volume estimates, one obtains very small hidden constants.

Our complexity improvement is based on a fairly simple idea. It is
equivalent to generate all lattice points within a ball and to generate
all integer points within an ellipsoid (consider the ellipsoid defined by
the quadratic form naturally associated with the given lattice basis).
Fincke and Pohst noticed that it was more efficient to work with the
ellipsoid than to consider a parallelepiped containing it: indeed, when
the dimension increases, the ratio between the two volumes tends to 0
very quickly. In his analysis, instead of considering the ellipsoid, Kannan
bounds the volume of the parallelepiped. Using rather involved techni-
calities, we bound the number of points within related ellipsoids. Some
parts of our proof could be of independent interest. For example, we show
that for any Hermite-Korkine-Zolotarev-reduced (HKZ-reduced for short)
lattice basis (b1, . . . , bd), and any subset I of {1, . . . , d}, we have:

‖b1‖|I|
∏

i∈I ‖b∗i ‖
≤
√

d
|I|
“

1+log d
|I|

”

,

where (b∗i )i≤d is the Gram-Schmidt orthogonalisation of the bi’s. This
generalises the results of [28] on the quality of HKZ-reduced bases.

Practical Implications. We do not change Kannan’s algorithm, but
only improve its complexity upper-bound. As a consequence, the running-
time of Kannan’s algorithm remains the same. Nevertheless, our work
may still have some important practical impact. First of all, it revives
the interest on Kannan’s algorithm. Surprisingly, although it has the best
complexity upper-bound, it is not the one implemented in the usual num-
ber theory libraries (e.g., NTL [32] and Magma [18] implement Schnorr-
Euchner’s variant [30]): we show that by using Kannan’s principle (i.e.,
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pre-processing the basis before starting the enumeration), one can solve
SVP in larger dimensions. This might point a problem in NTRU’s secu-
rity estimates, since they are derived from experimentations with NTL.
Secondly, our analysis helps providing a heuristic measure of the (practi-
cal) cost of solving SVP for a particular instance, which is both efficiently
computable and reliable: given a lattice basis, it provides very quickly a
heuristic upper bound on the cost of finding a shortest vector.

Road-Map of the Paper. In Section 2, we recall some basic definitions
and properties on lattice reduction. Section 3 is devoted to the description
of Kannan’s algorithm and Section 4 to its complexity analysis. In Sec-
tion 5, we give without much detail our sibling result on CVP, as well as
direct consequences of our result for block-based algorithms. In Section 6,
we discuss the practical implications of our work.

Notation. All logarithms are natural logarithms, i.e., log(e) = 1. Let ‖·‖
and 〈·, ·〉 be the Euclidean norm and inner product of R

n. Bold variables
are vectors. We use the bit complexity model. The notation P(n1, . . . , ni)
means (n1 · . . . ·ni)

c for some constant c > 0. If x is real, we denote by bxe
a closest integer to it (with any convention for making it unique) and we
define the centred fractional part {x} as x−bxe. Finally, for any integers a
and b, we define Ja, bK as [a, b] ∩ Z.

2 Background on Lattice Reduction

We assume that the reader is familiar with the geometry of numbers and
its algorithmic aspects. Introductions may be found in [21] and [27].

Lattice invariants. Let b1, . . . , bd be linearly independent vectors. Their
Gram-Schmidt orthogonalisation (GSO) b

∗
1, . . . , b

∗
d is the orthogonal fam-

ily defined recursively as follows: the vector b
∗
i is the component of bi

which is orthogonal to the span of the vectors b1, . . . , bi−1. We have b
∗
i =

bi −
∑i−1

j=1 µi,jb
∗
j where µi,j =

〈bi,b
∗
j 〉

‖b∗j‖2
. For i ≤ d we let µi,i = 1. Notice

that the GSO family depends on the order of the vectors. If the bi’s are
integer vectors, the b

∗
i ’s and the µi,j ’s are rational. The volume of a lat-

tice L is defined as det(L) =
∏d

i=1 ‖b∗i ‖, where the bi’s are any basis of L.
It does not depend on the choice of the basis of L and can be interpreted
as the geometric volume of the parallelepiped naturally spanned by the
basis vectors. Another important lattice invariant is the minimum. The
minimum λ(L) is the length of a shortest non-zero lattice vector.

The most famous lattice problem is the shortest vector problem (SVP).
Here is its computational variant: given a basis of a lattice L, find a lattice
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vector whose norm is exactly λ(L). The closest vector problem (CVP) is a
non-homogeneous variant of SVP. We give here its computational variant:
given a basis of a lattice L and a target vector in the real span of L, find
a vector of L which is closest to the target vector.

The volume and the minimum of a lattice cannot behave indepen-
dently. Hermite [14] was the first to bound the ratio λ(L)

(det L)1/d as a func-

tion of the dimension only. His bound was later on greatly improved by
Minkowski in his Geometrie der Zahlen [22]. Hermite’s constant γd is

defined as the supremum over d-dimensional lattices L of λ(L)2

(det L)2/d . We

have γd ≤ d+4
4 (see [19]), which we will refer to as Minkowski’s theorem.

Lattice reduction. In order to solve lattice problems, a classical strategy
consists in considering a lattice basis and trying to improve its quality
(e.g., the slow decrease of the ‖b∗i ‖’s). This is called lattice reduction. The
most usual notions of reduction are probably L3 and HKZ. HKZ-reduction
is very strong, but expensive to compute. On the contrary, L3-reduction
is fairly cheap, but an L3-reduced basis is of much lower quality.

A basis (b1, . . . , bd) is size-reduced if its GSO family satisfies |µi,j | ≤
1/2 for all 1 ≤ j < i ≤ d. A basis (b1, . . . , bd) is said to be Hermite-

Korkine-Zolotarev-reduced if it is size-reduced, the vector b1 reaches the
lattice minimum, and the projections of the (bi)i≥2’s orthogonally to the
vector b1 are themselves an HKZ-reduced basis. Lemma 1 immediately
follows from this definition and Minkowski’s theorem. It is the sole prop-
erty on HKZ-reduced bases that we will use.

Lemma 1. If (b1, . . . , bd) is HKZ-reduced, then for any i ≤ d, we have:

‖b∗i ‖ ≤
√

d− i + 5

4
·





∏

j≥i

‖b∗j‖





1

d−i+1

.

A basis (b1, . . . , bd) is L3-reduced [17] if it is size-reduced and if its GSO

satisfies the (d− 1) Lovász conditions: 3
4 ·
∥

∥b
∗
κ−1

∥

∥

2 ≤
∥

∥b
∗
κ + µκ,κ−1b

∗
κ−1

∥

∥

2
.

The L3-reduction implies that the norms of the GSO vectors never drop
too fast: intuitively, the vectors are not far from being orthogonal. Such
bases have useful properties, like providing exponential approximations
to SVP and CVP. In particular, their first vector is relatively short.

Theorem 1 ([17]). Let (b1, . . . , bd) be an L3-reduced basis of a lattice L.

Then we have ‖b1‖ ≤ 2
d−1

4 ·(det L)1/d. Moreover, there exists an algorithm

that takes as input any set of integer vectors and outputs in deterministic

polynomial time an L3-reduced basis of the lattice they span.
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In the following, we will also need the fact that if the set of vectors
given as input to the L3 algorithm starts with a shortest non-zero lat-
tice vector, then this vector is not changed during the execution of the
algorithm: the output basis starts with the same vector.

3 Kannan’s SVP Algorithm

Kannan’s SVP algorithm [16] relies on multiple calls to the so-called short
lattice points enumeration procedure. The latter finds all vectors of a given
lattice that are in the sphere centred in 0 and of some prescribed radius.
Variants of the enumeration procedure are described in [1].

3.1 Short Lattice Points Enumeration

Let (b1, . . . , bd) be a basis of a lattice L ⊂ Z
n and let A ∈ Z. Our goal

is to find all lattice vectors
∑d

i=1 xibi of squared Euclidean norm ≤ A.
The enumeration works as follows. Suppose that ‖∑i xibi‖2 ≤ A for some
integers xi’s. Then, by considering the components of the vector

∑

i xibi

on each of the b
∗
i ’s, we obtain d equations:

(xd)
2 · ‖b∗d‖2 ≤ A,

(xd−1 + µd,d−1xd)
2 · ‖b∗d−1‖2 ≤ A− (xd)

2 · ‖b∗d‖2,
. . .



xi +
d
∑

j=i+1

µj,ixj





2

· ‖b∗i ‖2 ≤ A−
d
∑

j=i+1

lj ,

. . .

where li = (xi +
∑

j>i xjµj,i)
2 · ‖b∗i ‖2. The algorithm of Figure 1 mimics

the equations above. It can be shown that the bit-cost of this algorithm
is bounded by the number of loop iterations times a polynomial in the
bit-size of the input. We will prove that if the input basis (b1, . . . , bd) is

sufficiently reduced and if A = ‖b1‖2, there are ≤ d
d
2e

+o(d) loop iterations.

3.2 Solving SVP

To solve SVP, Kannan provides an algorithm that computes HKZ-reduced
bases, see Figure 2. The cost of the enumeration procedure dominates the
overall cost and mostly depends on the quality of the input basis. The
main idea of Kannan’s algorithm is to spend a lot of time pre-computing a
basis of excellent quality before calling the enumeration procedure. More
precisely, it pre-computes a so-called quasi-HKZ-reduced basis.
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Input: An integer lattice basis (b1, . . . , bd), a bound A ∈ Z.
Output: All vectors in L(b1, . . . , bd) that are of squared norm ≤ A.
1. Compute the rational µi,j ’s and ‖b∗

i ‖
2’s.

2. x:=0, l:=0, S:=∅.
3. i:=1. While i ≤ d, do
4. li:=(xi +

P

j>i xjµj,i)
2‖b∗

i ‖
2.

5. If i = 1 and
Pd

j=1
lj ≤ A, then S:=S ∪ {

Pd
j=1

xjbj}, x1:=x1 + 1.

6. If i 6= 1 and
P

j≥i lj ≤ A, then

7. i:=i − 1, xi:=

‰

−
P

j>i(xjµj,i) −

r

A−
P

j>i lj

‖b∗

i
‖2

ı

.

8. If
P

j≥i lj > A, then i:=i + 1, xi:=xi + 1.

9. Return S.

Fig. 1. The enumeration algorithm.

Definition 1 (Quasi-HKZ-reduction). A basis (b1, . . . , bd) is quasi-

HKZ-reduced if it is size-reduced, if ‖b∗2‖ ≥ ‖b∗1‖/2 and if once projected

orthogonally to b1, the other bi’s are HKZ-reduced.

Input: An integer lattice basis (b1, . . . , bd).
Output: An HKZ-reduced basis of the same lattice.
1. L3-reduce the basis (b1, . . . , bd).
2. Compute the projections (b′

i)i≥2 of the bi’s orthogonally to b1.
3. HKZ-reduce the (d − 1)-dimensional basis (b′

2, . . . , b
′
d).

4. Extend the obtained (b′
i)i≥2’s into vectors of L by adding to them rational

multiples of b1, in such a way that we have |µi,1| ≤ 1/2 for any i > 1.
5. If (b1, . . . , bd) is not quasi-HKZ-reduced, swap b1 and b2 and go to Step 2.
6. Call the enumeration procedure to find all lattice vectors of length ≤ ‖b1‖.

Let b0 be a shortest non-zero vector among them.
7. (b1, . . . , bd):=L3(b0, . . . , bd).
8. Compute the projections (b′

i)i≥2’s of the bi’s orthogonally to the vector b1.
9. HKZ-reduce the (d − 1)-dimensional basis (b′

2, . . . , b
′
d).

10. Extend the obtained (b′
i)i≥2’s into vectors of L by adding to them rational

multiples of b1, in such a way that we have |µi,1| ≤ 1/2 for any i > 1.

Fig. 2. Kannan’s SVP algorithm.

A few comments need to be made on the algorithm of Figure 2.
Steps 3 and 9 are recursive calls. However, the b

′
i’s may be rational vec-

tors, whereas the input of the algorithm must be integral. These vectors
may be scaled by a common factor. Steps 4 and 10 may be performed
by expressing the reduced basis vectors as integer linear combinations
of the initial ones, using these coefficients to recover lattice vectors and
subtracting a correct multiple of the vector b1. In Step 6, it is possible to
choose such a vector b0, since this enumeration always provides non-zero
solutions (the vector b1 is one of them).
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3.3 Cost of Kannan’s SVP Solver

We recall briefly Helfrich’s analysis [13] of Kannan’s algorithm and explain
our complexity improvement. Let C(d, n, B) be the worst-case complexity
of the algorithm of Figure 2 when given as input a d-dimensional basis
which is embedded in Z

n and whose coefficients are smaller than B in
absolute value. The following properties hold:

– Kannan’s algorithm computes an HKZ-reduced basis of the lattice
spanned by the input vectors.

– All arithmetic operations performed during the execution are of cost
P(d, n, log B). This implies that C(d, n, B) can be bounded by C(d) ·
P(log B, n) for some function C(d).

– There are fewer than O(1) + log d iterations of the loop of Steps 2–5.

– The cost of the call to the enumeration procedure at Step 6 is bounded
by P(log B, n) · dd/2+o(d).

From these properties and those of the L3 algorithm as recalled in the
previous section, it is easy to obtain the following equation:

C(d) ≤ (O(1) + log d)(C(d− 1) + P(d)) + P(d) + d
d
2
+o(d).

One can then derive the bound C(d, B, n) ≤ P(log B, n) · d d
2
+o(d).

The main result of the present paper is to improve this complexity

upper bound to P(log B, n) · d d
2e

+o(d). In fact, we show the following:

Theorem 2. Given as inputs a quasi-HKZ-reduced basis (b1, . . . , bd) and

A = ‖b1‖2, there are 2O(d) ·d d
2e loop iterations during the execution of the

enumeration algorithm as described in Figure 1. As a consequence, given

a d-dimensional basis of n-dimensional vectors whose entries are integers

with absolute values ≤ B, one can compute an HKZ-reduced basis of the

spanned lattice in deterministic time P(log B, n) · d d
2e

+o(d).

4 Complexity of the Enumeration Procedure

This section is devoted to proving Theorem 2. The previous section has
shown that the cost of Kannan’s algorithm is dominated by the time for
enumerating the integer points in the hyper-ellipsoids (Ei)1≤i≤d defined

by Ei =
{

(yi, . . . , yd) ∈ R
d−i+1, ‖∑j≥i yjb

(i)
j ‖ ≤ ‖b1‖

}

, where b
(i)
j = bj −

∑

k<i µj,kb
∗
k is the vector bj once projected orthogonally to b

∗
1, . . . , b

∗
i−1.
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Classically, the number of integer points in a body of some R
n is heuristi-

cally estimated by the n-dimensional volume of the body. This yields the
following heuristic complexity upper-bound for Kannan’s algorithm:

max
i≤d

Vi‖b1‖i
∏

j≥d−i+1 ‖b∗j‖
<∼

‖b1‖i
(
√

i)i ·∏j≥d−i+1 ‖b∗j‖
, (1)

where Vi is the volume of the i-dimensional unit ball.

Here, such an estimate may not be too optmistic since the hyper-
ellipsoids might be too flat for the approximation by the volume to be
valid. The first step of our analysis is to prove a slight modification of this
heuristic estimate. This is essentially an adaptation of a method due to
Mazo and Odlyzko [20] to bound the number of integer points in hyper-

spheres. We prove the weaker upper bound maxI⊂J1,dK
‖b1‖|I|√

d
|I|Q

i∈I ‖b∗
i ‖

, for

quasi-HKZ-reduced bases (Subsections 4.1 and 4.2).

In the second step of our analysis (Subsection 4.3), we bound the above
quantity. This involves a rather precise study of the geometry of HKZ-
reduced bases. The only available tool is Minkowski’s inequality, which
is used numerous times. For the intuition, the reader should consider the
typical case where (bi)1≤i≤d is an HKZ-reduced basis for which (‖b∗i ‖)i

is a non-increasing sequence. In that case, the first part of the analysis
shows that one has to consider a set I of much simpler shape: it is an
interval Ji, dK starting at some index i. Lemmata 2 and 3 (which should
thus be considered as the core of the proof) and the fact that x log x ≥
−1/e for x ∈ [0, 1] are sufficient to deal with such sets.

Non-connex sets I are harder to handle. We split the HKZ-reduced
basis into blocks (defined by the expression of I as a union of intervals),
i.e., groups of consecutive vectors bi, . . . , bj−1 such that i, . . . , k − 1 6∈ I
and k, . . . , j − 1 ∈ I. The former vectors will be the “large ones” and the
latter the “small ones”. Over each block, Lemma 3 relates the average size
of the small vectors to the average size of the whole block. We consider
the blocks by decreasing indices and use an amortised analysis to combine
the local behaviours on blocks to obtain a global bound (Lemma 4). A
final convexity argument gives the result (Lemma 5).

4.1 Integer Points in Hyper-ellipsoids

In this subsection, we do not assume anything on the input basis vec-
tors b1, . . . , bd and on the input bound A. Up to some polynomial in d
and log B, the complexity of the enumeration procedure of Figure 1 is
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the number of loop iterations. This number of iterations is itself bounded
by 3

∑d
i=1 |Ei|. Indeed, the truncated coordinate (xi, . . . , xd) is either a

valid one, i.e., we have ‖∑d
j=i xjb

(i)
j ‖2 ≤ A, or (xi − 1, . . . , xd) is a valid

one, or (xi+1, . . . , xd) is a valid one. In fact, if (xi, . . . , xd) is a valid
truncated coordinate, at most two non-valid ones related to that one
may be considered during the execution of the algorithm: (xi +1, . . . , xd)
and (xi−1, xi . . . , xd) for at most one integer xi−1. We now fix some i ≤ d.

By applying the change of variable xj ← xj −
⌊

∑

k>j µk,jxk

⌉

, we obtain:

|Ed−i+1| ≤

∣

∣

∣

∣

∣

∣







(xj)i≤j≤d ∈ Z
d−i+1,

∑

j≥i

(xj +
∑

k>j

µk,jxk)
2 · ‖b∗j‖2 ≤ A







∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣







(xj)i≤j≤d ∈ Z
d−i+1,

∑

j≥i

(xj + {
∑

k>j

µk,jxk})2 · ‖b∗j‖2 ≤ A







∣

∣

∣

∣

∣

∣

.

If x is an integer and ε ∈ [−1/2, 1/2], then we have (x + ε)2 ≥ x2/4
(it suffices to use the inequality |ε| ≤ 1/2 ≤ |x|/2, which is valid for a
non-zero x). As a consequence, up to a polynomial factor, the complexity
of the enumeration is bounded by

∑

i≤d Ni, where Ni =
∣

∣E ′i ∩ Z
d−i+1

∣

∣

and E ′i =
{

(yi, . . . , yd) ∈ R
d−i+1,

∑

j≥i y
2
j ‖b∗j‖2 ≤ 4A

}

, for any i ≤ d.

We again fix some index i. The following sequence of relations is in-
spired from [20, Lemma 1].

Ni =
∑

(xi,...,xd)∈Zd−i+1

1E ′
i
(xi, . . . , xd) ≤ exp



d



1−
∑

j≥i

x2
j

‖b∗j‖2
4A









≤ ed ·
∏

j≥i

∑

x∈Z

exp

(

−x2
d‖b∗j‖2

4A

)

= ed ·
∏

j≥i

Θ

(

d‖b∗j‖2
4A

)

,

where Θ(t) =
∑

x∈Z
exp(−tx2) is defined for t > 0. Notice that Θ(t) = 1+

2
∑

x≥1 exp(−tx2) ≤ 1+2
∫∞
0 exp(−tx2)dx = 1+

√

π
t . Hence Θ(t) ≤ 1+

√
π√

t

for t ≤ 1 and Θ(t) ≤ 1 +
√

π for t ≥ 1. As a consequence, we have:

Ni ≤ (4e(1 +
√

π))d ·
∏

j≥i

max

(

1,

√
A√

d‖b∗j‖

)

. (2)

One thus concludes that the cost of the enumeration is bounded by:

P(n, log A, log B) · 2O(d) · max
I⊂J1,dK

(

(
√

A)|I|

(
√

d)|I|
∏

i∈I ‖b∗i ‖

)

.
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4.2 The Case of Quasi-HKZ-Reduced Bases

We now suppose that A = ‖b1‖2 and that the input basis (b1, . . . , bd)
is quasi-HKZ-reduced. We are to strengthen the quasi-HKZ-reducedness
hypothesis into an HKZ-reducedness hypothesis. Let I ⊂ J1, dK. If 1 /∈ I,
then, because of the quasi-HKZ-reducedness assumption:

‖b1‖|I|
(
√

d)|I|
∏

i∈I ‖b∗i ‖
≤ 2d ‖b∗2‖|I|

(
√

d)|I|
∏

i∈I ‖b∗i ‖
.

If 1 ∈ I, we have, by removing ‖b∗1‖ from the product
∏

i∈I−{1} ‖b∗i ‖:

‖b1‖|I|
(
√

d)|I|
∏

i∈I ‖b∗i ‖
≤ 2d ‖b∗2‖|I|−1

(
√

d)|I|−1
∏

i∈I−{1} ‖b∗i ‖
.

As a consequence, Theorem 2 follows from the following:

Theorem 3. Let (b1, . . . , bd) be HKZ-reduced and I ⊂ J1, dK. Then

‖b1‖|I|
∏

i∈I ‖b∗i ‖
≤ (
√

d)
|I|
“

1+log d
|I|

”

≤ (
√

d)
d
e
+|I|.

By applying Theorem 3 the HKZ-reduced basis (b1, . . . , bi) and I =
{i}, we recover the result of [28]: ‖b∗i ‖ ≥ (

√
i)− log i−1 · ‖b1‖.

4.3 A Property on the Geometry of HKZ-Reduced Bases

In this section, we prove Theorem 3, which is the last missing part to
obtain the claimed result. The proofs of the following lemmata will be
contained in the full version of this paper. In the sequel, (bi)i≤d is an
HKZ-reduced basis of a lattice L of dimension d ≥ 2.

Definition 2. For any I ⊂ J1, dK, we define πI =
(
∏

i∈I ‖b∗i ‖
) 1

|I| . More-

over, if k ∈ J1, d− 1K, we define Γd(k) =
∏d−1

i=d−k (γi+1)
1

2i .

We need upper bounds on Γd(k) and a technical lemma allowing us
to finely recombine such bounds. Intuitively, the following lemma is a
rigorous version of the identity:

log Γd(k) ≈
∫ d

x=d−k

x

2
log x dx ≈ log2(d)− log2(d− k)

4
<∼

log d

2
log

d

d− k
.

Lemma 2. For all 1 ≤ k < d, we have Γd(k) ≤
√

d
log d

d−k .
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We now give an “averaged” version of [28, Lemma 4], deriving from
Lemma 2. This provides the result claimed in Theorem 3 for any set I of
the shape Ji, jK, for any i ≤ j ≤ d.

Lemma 3. For all k ∈ J0, d− 1K, we have πJ1,kK ≤ (Γd(k))d/k · πJk+1,dK

and πJk+1,dK ≥ (Γd(k))−1 · (det L)1/d ≥
√

d
log d−k

d (det L)1/d.

We prove Theorem 3 by induction on the number of intervals occurring
in the expression of the set I as a union of intervals. The following lemma
is the induction step. This is a recombination step, where we join one block
(between the indices 1 and v, the“small vectors”being those between u+1
and v) to one or more already considered blocks on its right. An important
point is to ensure that the densities δi defined below actually decrease
when their indices increase. Its proof is based on Lemma 3.

Lemma 4. Let (b1, . . . , bd) be an HKZ-reduced basis. Let v ∈ J2, dK, I ⊂
Jv + 1, dK and u ∈ J1, vK. Assume that:

π
|I|
I ≥

∏

i<t

(

π
|Ii|
Jαi+1,αi+1K ·

√
d
|Ii| log δi

)

,

where Ii = I ∩ Jαi + 1, αi+1K , δi = |Ii|
αi+1−αi

is the density of the set I in

Jαi + 1, αi+1K, and the integers t and αi’s, and the densities δi’s satisfy t ≥
1, v = α1 < . . . < αt ≤ d and 1 ≥ δ1 > . . . > δt−1 > 0. Then, we have

π
|I′|
I′ ≥

∏

i<t′

(

π
|I′i|
Jα′

i+1,α′
i+1K ·

√
d
|I′i| log δ′i

)

,

where I ′ = Ju + 1, vK ∪ I, I ′i = I ′ ∩
q
α′

i + 1, α′
i+1

y
, δ′i =

|I′i|
α′

i+1
−α′

i
and the

integers t′ and α′
i’s, and the densities δ′i satisfy t′ ≥ 1, 0 = α′

1 < . . . <
α′

t′ ≤ d and 1 ≥ δ′1 > . . . > δ′t′−1 > 0.

The last ingredient to the proof of Theorem 3 is the following, which
derives from the convexity of the function x 7→ x log x.

Lemma 5. Let ∆ ≥ 1, and define F∆(k, d) = ∆−k log k
d . We have, for

any t ∈ Z, for any k1, . . . , kt ∈ Z and d1, . . . , dt ∈ Z such that 1 ≤ ki < di

for all i ≤ t,

∏

i≤t

F∆(ki, di) ≤ F∆





∑

i≤t

ki,
∑

i≤t

di



 .
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Finally, Theorem 3 follows from Lemmata 4 and 5.

Proof of Theorem 3. Lemma 4 gives us, by induction on the size of the
considered set I, that for all I ⊂ J1, dK:

π
|I|
I ≥

∏

i<t

(

π
|Ii|
Jαi+1,αi+1K ·

√
d
|Ii| log δi

)

,

where Ii = I∩Jαi + 1, αi+1K, and t, the αi’s, and the densities δi = |Ii|
αi+1−αi

satisfy t ≥ 1, 0 = α1 < . . . < αt ≤ d and 1 ≥ δ1 > . . . > δt−1 > 0. By
using Lemma 5 with ∆:=

√
d, ki:= |Ii| and di:=αi+1 − αi, we obtain:

π
|I|
I ≥

(√
d
|I| log |I|

αt−α1

)

·
(

∏

i<t

π
|Ii|
Jαi+1,αi+1K

)

.

We define δt = 0. Because of the definition of the αi’s, we have:

∏

i<t

π
|Ii|
Jαi+1,αi+1K =

∏

i<t

(

π
αi+1−αi

Jαi+1,αi+1K

)δi

=
∏

i<t

∏

i≤j<t

(

π
αi+1−αi

Jαi+1,αi+1K

)δj−δj+1

=
∏

j<t





∏

i≤j

π
αi+1−αi

Jαi+1,αi+1K





δj−δj+1

=
∏

j<t

(

π
αj+1

J1,αj+1K

)δj−δj+1

.

By using t− 1 times Minkowski’s theorem, we obtain that:

π
|I|
I

√
d
|I| log |I|

d

≥
(‖b1‖√

d

)

P

j<t αj+1(δj−δj+1)

≥
(‖b1‖√

d

)|I|
.

The final inequality of the theorem comes from the fact that the func-
tion x 7→ x log(d/x) is maximal for x = d/e. 2

5 CVP and Other Related Problems

Our improved analysis of Kannan’s algorithm can be adapted to the Clos-
est Vector Problem and other problems related to strong lattice reduction.

In CVP, we are given a basis (b1, . . . , bd) and a target vector t, and
we look for a lattice vector that is closest to t. Kannan’s CVP algorithm
starts by HKZ-reducing the bi’s. Then it runs a slight modification of the
enumeration algorithm of Figure 1. For the sake of simplicity, we assume
that ‖b∗1‖ is the largest of the ‖b∗i ‖’s (we refer to Kannan’s proof [16]
for the general case). By using Babai’s nearest hyperplane strategy [6],
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we see that there is a lattice vector b at distance less than
√

d · ‖b1‖ of
the target vector t. As a consequence, if we take A = d · ‖b1‖2 in the
modified enumeration procedure, we will find all solutions. The analysis

then reduces (at the level of Equation (2)) to bound the ratio ‖b1‖d
Q

i≤d ‖b∗i ‖
,

which can be done with Minkowski’s theorem.

Theorem 4. Given a basis (b1, . . . , bd) and a target vector t, all of them

in Z
n and with coordinates whose absolute values are smaller than some B,

one can compute all vectors in the lattice spanned by the bi’s that are clos-

est to t in deterministic time P(log B, n) · dd/2+o(d).

The best deterministic complexity upper bound previously known for
this problem was P(log B, n) · dd+o(d) (see [13, 7]).

Our result can also be adapted to the enumeration of all vectors of
a given lattice that are of length below a prescribed bound, which is in
particular useful in the context of computing lattice theta series. Another
important consequence of our analysis is a significant worst-case bound
improvement of Schnorr’s block-based strategy [28] to compute relatively
short vectors in high-dimensional lattices. More precisely, if we take the
bounds given in [10] for the quality of Schnorr’s semi-2k reduction and for
the transference reduction, we obtain the table of Figure 3. Each entry
of the table gives the upper bound of the quantity ‖b1‖

(det L)1/d which is

reachable for a computational effort of 2t, for t growing to infinity. To
sum up, the exponent constant is divided by e ≈ 2.7. The table upper
bounds may be adapted to the quantity ‖b1‖

λ1(L) by squaring them.

Semi-2k reduction Transference reduction

Using [13] <
∼ 2

log 2
2

d log2 t
t ≈ 20.347 d log2 t

t <
∼ 2

1
4

d log2 t
t ≈ 20.250 d log2 t

t

Using Theorem 2 <
∼ 2

log 2
2e

d log2 t
t ≈ 20.128 d log2 t

t <
∼ 2

1
4e

d log2 t
t ≈ 20.092 d log2 t

t

Fig. 3. Worst-case bounds for block-based reduction algorithms.

6 Practical Implications

As mentioned in the introduction, the main contribution of the present
paper is to improve the worst-case complexity analysis of an already
known algorithm, namely, Kannan’s HKZ-reduction algorithm. Our im-
provement has no direct impact on the practical capabilities of lattice
reduction algorithms. However, our work may have two indirect conse-
quences: popularising Kannan’s principle and providing easily computable
cost estimates for SVP instances.
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6.1 Pre-processing Before Enumerating

In the main libraries containing lattice reduction routines, the shortest
vector problem is solved with the enumeration routine, but starting from
only L3-reduced bases. This is the case for the BKZ routines of Victor
Shoup’s NTL [32], which, depending on a parameter k, compute strongly
reduced bases in high dimensions (the quality being quantified by k). This
is also the case in Magma’s ShortestVectors routine [18], which com-
putes the shortest vectors of a given lattice. Both rely on the enumeration
of Schnorr and Euchner [30]. On the theoretical side, this strategy is worse
than using Kannan’s algorithm, the worst-case complexity being 2O(d2)

instead of dO(d). To justify this choice, one might argue that L3 com-
putes much better bases in practice than guaranteed by the worst-case
bounds, in particular in low dimensions (see [24] for more details), and
that the asymptotically superior algorithm of Kannan may overtake the
L3-based enumeration only for large dimensions (in particular too large
to be tractable).

It may be that the genuine Kannan algorithm is expensive. However,
the general principle of enumerating from a more than L3-reduced basis
works, as the following experiments tend to show. For a given dimension d,
we consider the lattice spanned by the columns of the following matrix:















x1 x2 . . . xd

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1















,

where the xi’s are chosen uniformly and independently in
q
0, 2100·dy. The

basis is then L3-reduced with a close to optimal parameter (δ = 0.99).
For the same lattice, we compute more reduced bases, namely BKZk-
reduced for different parameters k, using NTL’s BKZ_FP routine without
pruning and close to optimal factor (δ = 0.99). We run the same enumer-
ation routine starting from these different bases and compare the timings.
The results of the experiments are given in Figure 4. The enumeration
is a non-optimised C-code, which updates the norm upper bound during
the enumeration [30]. All timings are given in seconds and include the
BKZ-reduction (unless we start from the L3-reduced basis). Each point
corresponds to the average over at least 10 samples. The experiments
were performed on 2.4 GHz AMD Opterons. The enumeration from an
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L3-reduced basis is clearly outperformed. BKZ-reducing the basis with
larger block-sizes becomes more interesting when the dimension increases:
it seems that in moderate dimension, a BKZk reduced basis is close to
being HKZ-reduced, even when k is small with respect to the dimension.

pre-processing d = 40 d = 43 d = 46 d = 49 d = 52 d = 55 d = 58

L3 1.8 15 110 990 5.0 · 103 − −
BKZ10 0.36 1.6 6.7 36 160 − −
BKZ20 0.40 1.3 4.7 21 96 800 2.5 · 103

BKZ30 0.57 1.7 5.2 19 68 660 1.6 · 103

Fig. 4. Comparison between various pre-processings.

6.2 Estimating the Cost of Solving SVP

The cost of solving SVP on a particular instance with the enumeration
routine is essentially dominated by the cost of the highest-dimensional
enumeration. Up to a polynomial factor, the cost of the enumeration as
described in Figure 1 can be estimated with Equation (1):

E(b1, . . . , bd):= max
i≤d

πi/2 · ‖b1‖i
Γ (i/2 + 1) ·∏j≥d−i+1 ‖b∗j‖

.

This estimate is simply the application of the Gaussian heuristic, stating
that the number of integer points within a body is essentially the volume
of the body. It can be computed in polynomial time from the basis from
which the enumeration will be started. We computed E(b1, . . . , bd) for
random bases generated as above and obtained the table of Figure 5. It
confirms that a strong pre-processing should help increasing the dimen-
sion up to which SVP may be solved completely.

pre-processing d = 40 d = 45 d = 50 d = 55 d = 60 d = 65 d = 70 d = 75

L3 1.0 · 108 4.4 · 109 1.5 · 1014 9.6 · 1016 3.0 · 1018 6.1 · 1021 2.8 · 1027 1.6 · 1030

BKZ10 4.6 · 105 1.2 · 107 1.1 · 108 1.3 · 1010 7.6 · 1011 1.7 · 1014 4.3 · 1016 1.9 · 1019

BKZ20 2.4 · 105 2.7 · 106 3.1 · 107 1.3 · 109 4.1 · 1010 3.7 · 1012 6.4 · 1013 2.1 · 1016

BKZ30 1.9 · 105 1.6 · 106 1.8 · 107 3.0 · 108 4.3 · 109 1.1 · 1011 3.7 · 1012 1.9 · 1014

Fig. 5. Value of E(b1, . . . , bd) for randomly generated (b1, . . . , bd).

If one is looking for vectors smaller than some prescribed B (for ex-
ample if the existence of an unusually short vector is promised), then ‖b1‖
may be replaced by B in the estimate. Overall, these estimates are rather
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crude since factors that are polynomial in the dimension should be consid-
ered as well. Furthermore, it does not take into account more elaborate
techniques such as updating the norm during the enumeration, prun-
ing [30, 31] and random sampling [29].

Open problem. One may wonder if the complexity upper bound for
Kannan’s SVP algorithm can be decreased further. Work under progress
seems to show, by using a technique due to Ajtai [3], that it is sharp, in
the sense that for all ε > 0, we can build HKZ-reduced bases for which

the number of steps of Kannan’s algorithm would be at least dd( 1

2e
−ε).
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