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PERTURBATION ANALYSIS OF THE QR FACTOR R

IN THE CONTEXT OF LLL LATTICE BASIS REDUCTION

XIAO-WEN CHANG, DAMIEN STEHLÉ, AND GILLES VILLARD

Abstract. In 1982, Arjen Lenstra, Hendrik Lenstra Jr. and László Lovász in-
troduced an efficiently computable notion of reduction of basis of a Euclidean
lattice that is now commonly referred to as LLL-reduction. The precise def-
inition involves the R-factor of the QR factorisation of the basis matrix. In

order to circumvent the use of rational/exact arithmetic with large bit-sizes,
it is tempting to consider using floating-point arithmetic with small precision
to compute the R-factor. In the present article, we investigate the accuracy

of the factor R of the QR factorisation of an LLL-reduced basis. Our main
contribution is the first fully rigorous perturbation analysis of the R-factor of
LLL-reduced matrices under column-wise perturbations. Our results are very
useful to devise LLL-type algorithms relying on floating-point approximations.

1. Introduction

Let B ∈ R
m×n be of a full column rank matrix. It has a unique QR factor-

ization B = QR, where the Q-factor Q ∈ R
m×n has orthonormal columns, i.e.,

QT Q = I (where I is the identity matrix), and the R-factor R ∈ R
n×n is upper

triangular with positive diagonal entries (see, e.g., [6, §5]). This fundamental tool
in matrix computations is central to the LLL reduction algorithm, named after the
authors of [12], which aims at efficiently finding reduced bases of Euclidean lattices.

A Euclidean lattice L is a discrete subgroup of R
m and it can always be repre-

sented by a full column rank basis matrix B ∈ R
m×n: L = {Bx,x ∈ Z

n}. If n ≥ 2,
L has infinitely many bases. They are related by unimodular transforms, i.e., mul-
tiplication on the right of B by an n × n integer matrix with determinant ±1.
Given a lattice, one is often interested in obtaining a basis whose vectors are short
and close to being orthogonal. Refining the quality of a basis is generically called
lattice reduction. Among many others, lattice reduction has applications in cryp-
tology [19], algorithmic number theory [4], communications [16], etc. LLL takes
as input a basis matrix B and returns a basis of the same lattice which is made
of vectors whose norm product is not arbitrarily larger than the lattice determi-
nant detL =

√
det(BT B) (see Theorem 5.2). More informatively, LLL returns a

new basis matrix of the same lattice whose jth basis vector has norm not arbitrar-
ily larger than the norm of the orthogonal projection of this basis vector onto the
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orthogonal complement of the space spanned by the first j−1 basis vectors for each
j ≥ 2.

The original LLL algorithm [12] assumed that the input basis is integral and
used integer arithmetic for the operations on the basis and rational arithmetic for
the operations on the R-factor. The bit-size of each rational (the bit-size of a/b
with a, b ∈ Z is the sum of the bit-sizes of a and b) is bounded by a polynomial
in the bit-sizes of the input matrix entries. Nevertheless, the cost of the rational
arithmetic grows quickly and dominates the overall cost. Schnorr [22] was the
first to use approximations of these rationals in a rigorous way. His algorithm was
improved recently by Nguyen and Stehlé [17, 18] who significantly decreased the bit-
size required for each approximation, and thus the overall complexity of the LLL-
reduction. (Note that contrarily to [17, 18] Schnorr’s approximations are not relying
on standard floating-point arithmetic.) To further decrease the required precision
and therefore the cost, Schnorr [11, 23, 24] suggested using the Householder QR
factorization algorithm instead of the Cholesky factorization algorithm as was used
in [17, 18], since it is known that the R-factor computed by Householder’s algorithm
is more accurate than the one computed with the Cholesky factorization of BT B.

The R-factor of the matrix B varies continuously with B. If we consider a per-
turbed matrix B +∆B that is sufficiently close to B (note that in the perturbation
matrix ∆B, ∆ does not represent anything, i.e., ∆B is not a product of ∆ and B),
then its R-factor R + ∆R remains close to R. The goal of the present article is to
investigate how ∆B affects ∆R, for LLL-reduced matrices B. This perturbation
analysis helps understanding and providing (a priori) guarantees on the quality of
numerically computed factors R. The QR-factorization is typically computed by
Householder reflections, Givens rotations or the modified Gram-Schmidt orthogo-
nalization. These algorithms are backward stable with respect to the R-factor: if

the computations are performed in floating-point arithmetic, then the computed R̂

is the true R-factor of a matrix B̂ which is very close to the input matrix B (see [7,
§18]). Along with the backward stability analysis, a perturbation analysis pro-

vides accuracy bounds on the computed R̂. In the present paper, we consider a
perturbation ∆B that satisfies

(1.1) |∆B| ≤ εC|B|,

where ci,j = 1 for all i, j and ε > 0 is a small scalar (it will be specified in the relevant
theorems to be given in the paper how small it needs to be for the results to hold).
The motivation for considering such a class of perturbations is that the backward
rounding error from a rounding error analysis of the standard QR factorization
algorithms fits in this class with ε = O(u), where we omitted the dependence with
respect to the matrix dimensions and u is the unit roundoff (see [7, Th. 18.4] and
Theorem 6.4 given later).1

Our results. Our main contribution is the first fully rigorous perturbation
analysis of the R-factor of LLL-reduced matrices under the perturbation (1.1) (The-
orem 5.6). In order to make this result consistent with the LLL-reduction (i.e., the

1Note that the description of the backward error in [7, Th. 18.4] was modified in the newer
edition [8, Th. 19.4]. In the latter, the matrix equation (1.1) is replaced by ‖∆bi‖ ≤ ε‖bi‖, for
all i. The two formulations are equivalent (up to a small factor that is polynomial in the matrix

dimensions), but the matrix equation (1.1) is more suited for our sensitivity analysis.
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perturbed reduced basis remains reduced, possibly with respect to weaker reduc-
tion parameters), we introduce a new notion of LLL-reduction (Definition 5.3).
Matrices reduced in this new sense satisfy essentially the same properties as those
satisfied by matrices reduced in the classical sense. But the new notion of reduction
is more natural with respect to column-wise perturbations, as the perturbation of
a reduced basis remains reduced (this is not the case with the classical notion of
reduction). Another important ingredient of the main result, that may be of inde-
pendent interest, is the improvement of the perturbation analyses of [1] and [28]
for general full column rank matrices (section 2). More precisely, all our bounds
are fully rigorous, in the sense that no higher order error term is neglicted, and
explicit constant factors are provided. Explicit and rigorous bounds are invaluable
for guaranteeing computational accuracy: one can choose a precision that will be
known in advance to provide a certain degree of accuracy in the result. In [1, §6],
a rigorous error bound was proved. A (much) smaller bound was given in [1, §8],
but it is a first-order bound, i.e., high-order terms were neglected. Our rigorous
bound is close to this improved bound. Our approach to deriving this rigorous
bound is new and has been extended to the perturbation analysis of some other
important matrix factorizations [3]. Finally, we give explicit constants in the back-
ward stability analysis of Householder’s algorithm from [8, §19], which, along with
the perturbation analysis, provides fully rigorous and explicit error bounds for the
computed R-factor of a LLL-reduced matrix.

Implications. Our results are descriptive in nature. However, the rigorous
and explicit error analysis and the new notion of LLL-reducedness should lead to
significant algorithmic improvements. Intuitively, we formalize the idea that only
the O(n) most significant bits of the vectors matter for their LLL-reducedness.
Such a property has dramatic algorithmic consequences, as it implies that instead
of computing with all bits we shall try to make use of only O(n) bits for each matrix
entry. For instance, in a context similar to [27], our result implies that in order to
check the LLL-reducedness of a matrix, one only needs to consider O(n) most sig-
nificant bits of each column. This provides a O(n5)-time (resp. O(n4+ε)-time) LLL
certificate with naive integer arithmetic (resp. with FFT-based arithmetic [26]).
Also, our results have been used to devise an efficient algorithm that improves
the LLL-reducedness of an already LLL-reduced basis [15]. That algorithm finds
a good unimodular transform by looking only at the O(n) most significant bits of
each column of the input matrix. Furthermore, the present work is the first step
towards achieving Schnorr’s goal of an LLL algorithm relying on the floating-point
Householder algorithm. This goal has been reached in [14], which relies on the
present results. Finally, these results helped devising an LLL-reduction algorithm
whose bit-complexity is quasi-linear in fixed dimension [21], in the fashion of the
Knuth-Schönhage quasi-linear time gcd algorithm [10, 25]. Roughly speaking, the
first k bits of the quotients sequence of Euclid’s gcd algorithm depends only on the
first 2k bits of the two input integers. Knuth and Schönhage use that property
to compute the quotients sequence by looking only at the first bits of the remain-
ders sequence. Adapting this strategy to lattices involves truncations and hence
perturbations of the basis vectors.

Road map. In section 2, we give our perturbation analysis of the R-factor for
general full column matrices. Sections 3, 4 and 5 specialize the analysis to different
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sets of matrices, including LLL-reduced matrices. Finally, in section 6, we provide
explicit backward error bounds for Householder’s QR factorization algorithm.

Notation. If b is a vector, then ‖b‖p denotes its ℓp norm. If p = 2, we
omit the subscript. The jth column of a matrix A = (ai,j) is denoted by aj

and |A| denotes (|ai,j |). We use the MATLAB notation to denote submatrices:
The matrix A(i1 : i2, j1 : j2) consists of rows i1 to i2 and columns j1 to j2 of A;
If i1 and i2 (resp. j1 and j2) are omitted, then all the rows (resp. columns) of A
are kept; Finally, if i1 = i2 (resp. j1 = j2), we will write A(i1, j1 : j2) (resp.
A(i1 : i2, j1)). The Frobenius norm is ‖A‖F = (

∑
i,j a2

i,j)
1/2. The ℓp matrix norm

is ‖A‖p = sup
x∈Rn ‖Ax‖p/‖x‖p. We use ‖A‖1,∞ to denote either the 1-norm or the

∞-norm. We have ‖A‖2 ≤ ‖A‖F . If A and B are of compatible sizes, then ‖AB‖F ≤
‖A‖F ‖B‖2 (see [8, Pbm. 6.5]) and ‖AB‖2 ≤ ‖A‖2‖B‖2. If A is a square matrix,
then up(A) denotes the upper triangular matrix whose ith diagonal entry is ai,i/2
and whose upper-diagonal entries match those of A. We let Dn ⊆ R

n×n be the set
of diagonal matrices with positive diagonal entries. For any nonsingular matrix X
we define

(1.2) cond2(X) =
∥∥|X||X−1|

∥∥
2
.

If a is a real number, then fl(a) denotes the floating-point number closest to a
(with even mantissa when a is exactly half-way from two consecutive floating-point
numbers). As a side-effect of our bounds being fully explicit, and since we tried to
give tight and explicit perturbation bounds, some of theses bounds involve rather
complicated and uninteresting terms. To make the presentation more compact, we
encapsulate them in the variables c1, c2, . . ..

2. Refined Perturbation Analysis of the R-Factor

In this section, we first give a general matrix-norm perturbation bound, then
derive a column-wise perturbation bound.

2.1. A matrix-norm perturbation bound. We will present a rigorous bound
(i.e., without any implicit higher order term) on the perturbation of the R-factor
when B is under the perturbation (1.1). In order to do that, we need the following
two technical lemmas.

Lemma 2.1. Let n > 0, X ∈ R
n×n and D = diag(δ1, . . . , δn) ∈ Dn. We de-

fine ζD = 1 for n = 1 and, for n ≥ 2:

(2.1) ζD =

√
1 + max

1≤i<j≤n
(δj/δi)

2
.

Then we have

(2.2) ‖up(X) + D−1up(XT )D‖F ≤ ζD‖X‖F ,

and in particular, when XT = X and D = I,

(2.3) ‖up(X)‖F ≤
1√
2
‖X‖F .

Proof. The inequality (2.2) was given in [2, Lemma 5.1]. The inequality (2.3),
which was given in [2, Eq. (2.3)], can also be derived from (2.2). �
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The following provides a sufficient condition for the rank to be preserved during
a continuous change from a full column-rank matrix B to B + ∆B. This ensures
that the R-factor is well-defined on the full path. This is of course not true if the
matrix B is close to being rank deficient and the perturbation ∆B is not small, but
that situation is prevented by assumption (2.4).

Lemma 2.2. Let B ∈ R
m×n be of full column rank with QR factorization B = QR.

Let the perturbation matrix ∆B ∈ R
m×n satisfy (1.1). If

(2.4) cond2(R)ε <
c

m
√

n
,

for some constant 0 < c ≤ 1, then the matrix B + t∆B has full column rank for
any |t| ≤ 1. Furthermore, ‖∆BR−1‖F < c.

Proof. The second assertion follows from (2.4). In fact, from (1.1) and (2.4), we
obtain

‖∆BR−1‖F ≤ ε
∥∥C|Q||R||R−1|

∥∥
F
≤ ε

∥∥C
∥∥

F

∥∥Q
∥∥

F

∥∥|R||R−1|
∥∥

2

= εm
√

n cond2(R) < c.

We now consider the first assertion. Notice that

QT (B + t∆B) = R + tQT ∆B =
(
I + tQT ∆BR−1

)
R.

But ‖tQT ∆BR−1‖2 ≤ ‖∆BR−1‖2 < 1, thus I + tQT ∆BR−1 is non-singular. So
is QT (B + t∆B), and hence B + t∆B must have full column rank. �

Using the above two lemmas, we can prove the following perturbation theorem.

Theorem 2.3. Let B ∈ R
m×n be of full column rank with QR factorization B =

QR. Let the perturbation matrix ∆B ∈ R
m×n satisfy (1.1). If

(2.5) cond2(R)ε <

√
3/2− 1

m
√

n
,

then B + ∆B has a unique QR factorization

(2.6) B + ∆B = (Q + ∆Q)(R + ∆R),

and

(2.7)
‖∆R‖F
‖R‖2

≤ c1(m,n)χ(B) ε,

where, with ζD defined in (2.1):

c1(m,n) = (
√

6 +
√

3)mn1/2,(2.8)

χ(B) = infD∈Dn
χ(R,D), χ(R,D) =

ζD‖|R||R−1|D‖
2
‖D−1R‖

2

‖R‖2
.(2.9)

Proof. The condition (2.5) ensures that (2.4) holds with c =
√

3/2 − 1. Then, by
Lemma 2.2, B + t∆B is of full column rank for any |t| ≤ 1. Thus B + t∆B has the
unique QR factorization

(2.10) B + t∆B = (Q + ∆Q(t))(R + ∆R(t)),

which, with ∆Q(1) = ∆Q and ∆R(1) = ∆R, gives (2.6).
From (2.10), we obtain (B + t∆B)T (B + t∆B) = (R + ∆R(t))T (R + ∆R(t)),

leading to

RT ∆R(t) + ∆R(t)T R = tRT QT ∆B + t∆BT QR + t2∆BT ∆B −∆R(t)T ∆R(t).
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Multiplying the above by R−T from the left and R−1 from the right, we obtain

R−T ∆R(t)T + ∆R(t)R−1

= tQT ∆BR−1 + tR−T ∆BT Q + R−T
(
t2∆BT ∆B −∆R(t)T ∆R(t)

)
R−1.

Since ∆R(t)R−1 is upper triangular, it follows that

∆R(t)R−1 = up(tQT ∆BR−1 + tR−T ∆BT Q)

+ up(t2R−T ∆BT ∆BR−1)− up
[
R−T ∆R(t)T ∆R(t)R−1

]
.

(2.11)

Taking the F -norm on both sides of (2.11) and using Lemma 2.1 and the orthogo-
nality of Q, we obtain

(2.12) ‖∆R(t)R−1‖F ≤
√

2|t|·‖∆BR−1‖F +
1√
2
t2‖∆BR−1‖2F +

1√
2
‖∆R(t)R−1‖2F .

Let ρ(t) = ‖∆R(t)R−1‖F and δ(t) = |t|·‖∆BR−1‖F . Then from (2.12)

ρ(t)(
√

2− ρ(t)) ≤ δ(t)(2 + δ(t)).

Here the left hand side has its maximum of 1/2 with ρ(t) = 1/
√

2 and is increasing

with respect to ρ(t) ∈ [0, 1/
√

2]. But, by Lemma 2.2, for |t| ≤ 1,

(2.13) 0 ≤ δ(t) ≤ ‖∆BR−1‖F < c =
√

3/2− 1.

This implies that 0 ≤ δ(t)(2 + δ(t)) < 1/2 and ρ(t), starting from 0, cannot reach

its maximum. Hence ρ(t) < 1/
√

2 for any |t| ≤ 1. In particular, when t = 1,

(2.14) ‖∆RR−1‖F < 1/
√

2.

For any matrices X ∈ R
n×n and D ∈ Dn, we have up(XD) = up(X)D. Thus

from (2.11) with t = 1 it follows that

∆RR−1D = up
[
(QT ∆BR−1D) + D−1(DR−T ∆BT Q)D

]

+ up(R−T ∆BT ∆BR−1D)− up(R−T ∆RT ∆RR−1D).
(2.15)

Then, using Lemma 2.1, the inequality ‖up(X)‖F ≤ ‖X‖F for any X ∈ R
n×n and

the orthogonality of Q, we obtain from (2.15) that

‖∆RR−1D‖F ≤ ζD‖∆BR−1D‖F + ‖∆BR−1‖F ‖∆BR−1D‖F
+ ‖∆RR−1‖F ‖∆RR−1D‖F .

Therefore, with (1.1), (2.13) and (2.14), we have

‖∆RR−1D‖F ≤
ζD +

√
3/2− 1

1− 1/
√

2
‖C‖F ‖Q‖F

∥∥|R||R−1|D
∥∥

2

≤ (
√

6 +
√

3)ζDmn1/2
∥∥|R||R−1|D

∥∥
2
,

where in deriving the second inequality we used the fact that ζD ≥ 1. Therefore,

‖∆R‖F = ‖∆RR−1DD−1R‖F ≤ ‖∆RR−1D‖F ‖D−1R‖2
≤ (
√

6 +
√

3)ζDmn1/2
∥∥|R||R−1|D

∥∥
2
‖D−1R‖2,

leading to the bound (2.7). �
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Remark 1. Theorem 2.3 is a rigorous version of a first-order perturbation bound
given in [1, §8], which also involves χ(B). The new bound given here shows that
if (2.4) holds then the high-order terms ignored in [1, §8] are indeed negligible.
Numerical tests given in [1, §9] indicated that the first-order bound is a good
approximation to the relative perturbation error in the R-factor. This suggests
that the rigorous bound (2.7) is a good bound. By taking D = I in (2.9), we

obtain χ(B) ≤
√

2cond2(R). The quantity cond2(R) is involved in the rigorous
perturbation bound obtained in [1, §6] and can be arbitrarily larger than χ(B).

Remark 2. If the assumptions of Theorem 2.3 hold for B with perturbation ∆B,
then they also hold for BS, for any arbitrary column scaling S ∈ Dn, with per-
turbation ∆BS. The new R-factor is RS and the corresponding error is ∆RS.
However, the quantity χ(B) is not preserved under column scaling.

2.2. A column-wise perturbation bound. For j = 1, . . . , n, we define Rj =
R(1 : j, 1 : j), ∆Rj = ∆R(1 : j, 1 : j), rj = R(1 : j, j) and ∆rj = ∆R(1 : j, j). Using
Zha’s approach [28, Cor. 2.2], we derive the following result.

Corollary 2.4. If the assumptions of Theorem 2.3 hold, then for j = 1, . . . , n,

(2.16)
‖∆rj‖
‖rj‖

≤ c1(m, j)χ(B, j)ε,

where

(2.17) χ(B, j) = inf
D∈Dj

χ(R,D, j) ≥ 1, χ(R,D, j) =
ζD

∥∥|Rj ||R−1
j |D

∥∥
2
‖D−1rj‖

‖rj‖
.

Proof. For any j ≤ n, we define Bj = B(:, 1 : j) and ∆Bj = ∆B(:, 1 : j). Note that

|∆Bj | ≤ εC|Bj | and cond2(Rj)ε ≤ cond2(R)ε ≤ (
√

3/2 − 1)/(m
√

n). Thanks to
Remark 2, we can apply Theorem 2.3 to BjS for an arbitrary S ∈ Dj with the
perturbation matrix ∆BjS. Therefore, for any D ∈ Dj ,

‖∆RjS‖F ≤ c1(m, j)ζD

∥∥|Rj ||R−1
j |D

∥∥
2

∥∥D−1RjS
∥∥

2
ε.

Now, let the jth diagonal entry of S be 1 and the others tend to zero. Taking the
limit provides (2.16). The lower bound on χ(B, j) in (2.17) follows from ζD ≥ 1
and

∥∥|Rj ||R−1
j |D

∥∥
2
‖D−1rj‖ ≥

∥∥|Rj ||R−1
j |DD−1|rj |

∥∥ ≥
∥∥|RjR

−1
j rj |

∥∥ = ‖rj‖.
�

Remark 3. The quantity χ(B, j) can be interpreted as an upper bound on the
condition number of the jth column of R with respect to the perturbation ∆B
of B. It is easy to check that the lower bound 1 on χ(B, j) in (2.17) is reached
when j = 1, i.e., that χ(B, 1) = 1.

In the following sections, we specialize Theorem 2.3 and Corollary 2.4 to several
different classes of matrices, that are naturally linked to the LLL reduction.

3. Perturbation Analysis for Size-Reduced Matrices

We now study χ(B, j) for the class of size-reduced matrices, defined as follows.

Definition 3.1. Let η ≥ 0. A full column-rank matrix B ∈ R
m×n with R-factor R

is η-size-reduced if for any 1 ≤ i < j ≤ n, we have |ri,j | ≤ η · ri,i.
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A matrix is 1-size-reduced if the largest element in magnitude in each row of
the R-factor is reached on the diagonal. An example is the QR factorization with
standard column pivoting (see, e.g., [6, Sec. 5.4.1]): one permutes the columns of the
considered matrix so that for any j ≤ n, the jth column is the one maximising rj,j

among the last n − j + 1 columns. If column pivoting is used, then the sorted
matrix is 1-size-reduced. The LLL algorithm [12] has a sub-routine usually called
size-reduction which aims at computing a 1/2-size-reduced matrix by multiplying
the initial matrix on the right by an integer matrix whose determinant is equal to 1
or −1. In the L2 algorithm from [18], a similar sub-routine, relying on floating-point
arithmetic, aims at computing an η-size-reduced matrix, for any specified η > 1/2.

In subsection 3.1, we establish an upper bound on χ(B, j). That upper bound
corresponds to a particular choice of scaling D in χ(R,D, j). In subsection 3.2, we
compare our particular scaling with the different scalings discussed in [1, §9]. We
then give a geometric interpretation of the result we obtain in subsection 3.3.

3.1. Perturbation bounds for size-reduced matrices. We first propose a way
of selecting a good diagonal matrix D in (2.9) and in (2.17) to bound χ(B) and
χ(B, j), respectively. Combined with Theorem 2.3 and Corollary 2.4, this directly
provides matrix-norm and column-wise perturbation bounds.

Theorem 3.2. Let B ∈ R
m×n with full column rank be η-size-reduced and let R

be its R-factor. For j = 1, . . . , n, we define r′j,j = rj,j/max1≤k≤j rk,k and D′
j =

diag(r′1,1, . . . , r
′
j,j). Then

χ(B) ≤ 2(1 + (n− 1)η)(1 + η)n−1ζD′
n
,(3.1)

χ(B, j) ≤ c2(j, η)(1 + η)jζD′
j

(
max

1≤k≤j
rk,k

)
/‖rj‖, j = 1, . . . , n,(3.2)

where ζD is defined in (2.1) for any arbitrary positive diagonal matrix D, and

(3.3) c2(j, η) = 2
√

1 + (j − 1)η2/(1 + η).

Proof. Let R′
j be obtained from Rj by dividing the kth column by max1≤i≤k ri,i,

for k = 1, . . . , j. The diagonal entries of R′
j match r′i,i’s from D′

j . Since Rj is η-

size-reduced, so is R′
j . Let Tj = D′

j
−1

R′
j . We have ti,i = 1 and ti,k ≤ η for k > i.

Therefore, we have |T−1
j | ≤ U−1

j , where Uj ∈ R
j×j is upper triangular with ui,i = 1

and ui,k = −η for k > i, see, e.g., [8, Th. 8.12]. Since Vj = U−1
j satisfies vi,i = 1

and vi,k = η(1 + η)k−i−1 for k > i (see, e.g., [8, Eq. (8.4)]), we obtain

|Rj ||R−1
j |D′

j = |R′
j ||R′

j
−1|D′

j = D′
j |Tj ||T−1

j |

≤ D′
j |Uj ||Vj | = D′

j





1 2η 2η(1 + η) · 2η(1 + η)j−2

1 2η · 2η(1 + η)j−3

· · ·
1 2η

1




.

Since |r′i,i| ≤ 1 for any i, we have

(3.4)
∥∥|Rj ||R−1

j |D′
j

∥∥
1,∞
≤

(
1 + 2η

j−2∑

k=0

(1 + η)k
)
≤ 2(1 + η)j−1.
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Notice that |rp,q|/r′p,p = |rp,q|max1≤k≤p rk,k/rp,p ≤ η max1≤k≤p rk,k. It follows

that |D′
j
−1

Rj | ≤ (max1≤k≤j rk,k)|Uj |. Therefore,

‖D′
j
−1

Rj‖1,∞ ≤ (1 + (j− 1)η) max
1≤k≤j

rk,k,
∥∥D′

j
−1

rj

∥∥ ≤
√

1 + (j − 1)η2 max
1≤k≤j

rk,k.

Then from the above and (3.4), and using the fact that ‖S‖2 ≤ (‖S‖1‖S‖∞)1/2 for
any matrix S (see, e.g., [8, Eq. (6.19)]), we obtain

∥∥|R||R−1|D′
n

∥∥
2
‖D′

n
−1

R‖2
‖R‖2

≤ 2(1 + (n− 1)η)(1 + η)n−1,

∥∥|Rj ||R−1
j |D′

j

∥∥
2

∥∥D′
j
−1

rj

∥∥

‖rj‖
≤ 2

√
1 + (j − 1)η2(1 + η)j−1 max1≤k≤j rk,k

‖rj‖
.

Thus from (2.9) and (2.17) we conclude that (3.1) and (3.2) hold, respectively. �

Remark 4. Suppose we use the standard column pivoting strategy in computing
the QR factorization of B. Then ri,i ≥ rk,k for i < k ≤ j, implying that ζD′

j
≤
√

2.

Then, if P is the pivoting permutation matrix

χ(BP ) ≤
√

2n2n and χ(BP, j) ≤
√

2j2jr1,1/‖rj‖.
A similar bound on χ(BP ) was given in [1, Th. 8.2].

3.2. Choosing the row scaling in χ(R,D). In [1, §9], Chang and Paige suggest
different ways of choosing D in χ(R,D) to approximate χ(B). One way is to
choose Dr := diag(‖R(i, :)‖) and D = I and take min{χ(R,Dr), χ(R, I)} as an
approximation to χ(B). The other way is to choose D = De (see below for the
definition of De) and use χ(R,De) as an approximation to χ(B).

The following matrix shows that the scaling D′ from Theorem 3.2 can provide a
much better approximation to χ(B) than min(χ(R,Dr), χ(R, I)). Let

B = R =




1 0 0
0 γ ηγ
0 0 1/γ



 .

When γ goes to infinity, both χ(R,Dr) and χ(R, I) tend to infinity, whereas
χ(R,D′) remains bounded. This also indicates that min{χ(R,Dr), χ(R, I)} can
be significantly larger than χ(B).

The scaling De is constructed from DcR
−1 with Dc = diag(‖ri‖1). If we as-

sume that B is a generic η-size-reduced matrix (or, more formally, that each ri,j

is uniformly and independently distributed in [−η · ri,i, η · ri,i]), then with high
probability Dc is the same as diag(max1≤k≤i rk,k), up to a polynomial factor
in n. We have DcD

−1 ≤ Dc|R−1| ≤ Dc|V |D−1, where V is as in the proof of
Theorem 3.2 and D = diag(ri,i). This implies that up to a factor exponential
in n, ‖(DcR

−1)(:, i)‖ is 1/r′i,i. The diagonal matrix De is defined by De(i, i) =

min1≤k≤i 1/‖(DcR
−1)(:, k)‖2. Up to factors exponential in n and for generic η-

size-reduced matrices, the scaling De can be equivalently defined by De(i, i) =
min1≤k≤i r′k,k. A bound similar to the one of Theorem 3.2 can be derived for the

latter scaling. Nevertheless, if R is diagonal, then De = I and χ(R,De) =
√

2, but
χ(R,D′) can be significantly larger. Finally, one may note that it is not known how

2The description of De in [1, §9] has an unintended error.
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to compute De from R in O(n2) arithmetic operations or less, while computing D′

requires only O(n) arithmetic operations.

3.3. Geometric interpretation of Theorem 3.2. It is easy to verify that

max
1≤k≤i≤j

(r′i,i/r′k,k) ≤ ζD′
j
≤
√

2 max
1≤k≤i≤j

(r′i,i/r′k,k).

When (max1≤i≤j ri,i)/‖rj‖ = O(1), e.g., for a generic η-size-reduced matrix with
|ri,j | expected to be somewhat proportional to ri,i, we see from (3.2) that the
quantity max1≤k≤i≤j(r

′
i,i/r′k,k) bounds (up to a multiplicative factor that depends

only on j) the sensitivity of the jth column of the R-factor. Let x 7→ r(x) be
the piecewise affine interpolating function defined on [1, n] such that r(j) = rj,j

for j = 1, . . . , n. For x1 and x2 in [1, n] such that r(x1) = r(x2), we consider the
quantity maxx∈[x1,x2] r(x1)/r(x) = maxx∈[x1,x2] r(x2)/r(x), which, as illustrated by
Figure 1, represents the multiplicative depth of the graph of r between x1 and x2.

1 nx1 x2x

h = log
r(x1)
r(x)

1 n

log r

log H

Figure 1. A possible graph of log r: on the left hand side, with
a depth h between x1 and x2 (the multiplicative depth is exp(h));
on the right hand side, with the additive height function log H.

We define the maximum depth before rj,j as:

Hj = max
1≤x1≤x2≤j, r(x1)=r(x2)

(
max

x∈[x1,x2]

r(x1)

r(x)

)
,

which is illustrated on the right hand side of Figure 1. We now show the equivalence
between ζD′

j
and Hj . Without loss of generality, we consider only Hn.

Lemma 3.3. We have Hn = max1≤i≤j≤n(r′j,j/r′i,i).

Proof. We first prove that for any i and j such that 1 ≤ i ≤ j ≤ n, Hn ≥
r′j,j/r′i,i. We distinguish two cases, depending on the smallest index k0 at which
max1≤k≤j rk,k is reached. If k0 ≤ i, then r′j,j/r′i,i = rj,j/ri,i. If rj,j ≤ ri,i, the result
holds since Hn ≥ 1; otherwise, we have rj,j > ri,i, leading to Hn ≥ rj,j/ri,i (in the
definition of Hn, consider x = i, x2 = j and x1 ∈ [k0, i] such that r(x1) = r(x2)).
Suppose now that i < k0. Since r′j,j ≤ 1, we have r′j,j/r′i,i ≤ max1≤k≤i rk,k/ri,i.
The latter is not greater than Hn (in the definition of Hn, consider x = i, x1 ≤ i
such that r(x1) = max1≤k≤i rk,k and x2 ∈ [i, k0] such that r(x2) = r(x1)).

We now prove that max1≤i≤j≤n(r′j,j/r′i,i) ≥ Hn. Let x1 ≤ x ≤ x2 in [1, n]
be such that Hn = r(x1)/r(x) = r(x2)/r(x). We suppose that x1 < x < x2 as
otherwise Hn = 1 ≤ max1≤i≤j≤n(r′j,j/r′i,i). By the definition of r(·), the real x
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must be an integer. Similarly, either x1 or x2 is an integer. We consider these
two cases separately. Suppose first that x1 ∈ Z. Then r(x1) ≤ r(⌈x2⌉). We
must have max1≤k≤⌊x2⌋ rk,k = rx1,x1

and max1≤k≤⌈x2⌉ rk,k = r⌈x2⌉,⌈x2⌉. This gives
that r′x,x = rx,x/rx1,x1

and r′⌈x2⌉,⌈x2⌉
= 1. Thus Hn = rx1,x1

/rx,x = r′⌈x2⌉,⌈x2⌉
/r′x,x.

Suppose now that x2 ∈ Z. Then r(⌊x1⌋) ≥ r(x2). Since max1≤k≤x2
rk,k is reached

before x1, we have r′x2,x2
/r′x,x = rx2,x2

/rx,x = Hn. �

If (maxi≤j ri,i)/‖rj‖ = O(1), then from Corollary 2.4 and Theorem 3.2 it follows

that ‖∆rj‖/‖rj‖ <∼ (1 + η)jHjε.

4. Perturbation Analysis for Weakly-Size-Reduced Matrices

The perturbation bounds given in Theorem 3.2 does not indicate that size-
reducedness, as defined in section 3, is preserved after η-size-reduced B is perturbed
to B + ∆B. In fact, from (2.16) and (3.2),

(4.1) |∆ri,j | ≤ ‖∆rj‖ ≤ c1(m, j)c2(j, η)(1 + η)jζD′
j

(
max

1≤k≤j
rk,k

)
ε,

and in particular,

(4.2) |∆ri,i| ≤ c1(m, i)c2(i, η)(1 + η)iζD′
i

(
max
1≤k≤i

rk,k

)
ε.

If the rk,k’s are increasing, then the upper bound in (4.1) with i < j can be
arbitrarily larger than the upper bound in (4.2). Thus we cannot ensure that
|ri,j + ∆ri,j | ≤ η|ri,i + ∆ri,i|. Suppose we restrict ourselves to setting ε as a
function of n only. Computationally, this corresponds to allowing ourselves to use
arbitrary precision arithmetic, but with a precision that shall depend only on the
dimension and not on the matrix entries. Then for any η′ > η, one may choose
rk,k’s so that the perturbed basis cannot be guaranteed η′-size-reduced by the
perturbation bound. Overall, this means that given a basis that we are told is η-
size-reduced, and given η′ > η, we cannot always ensure that it is η′-size-reduced,
without setting the precision as a function of the matrix entries. This is a very
undesirable computational property. For this reason, we modify the notion of size-
reducedness. We will not be able to show that this new definition is preserved under
the perturbation analysis of the R-factor (although the counter-example above will
not work anymore): to obtain such a property, we will need a LLL-type set of
conditions relying on the weakened size-reduction (see section 5).

Definition 4.1. Let η, θ ≥ 0. A full column-rank matrix B ∈ R
m×n with R-

factor R is (η, θ)-weakly-size-reduced ((η, θ)-WSR for short) if |ri,j | ≤ ηri,i + θrj,j

for any i < j.

The following matrix illustrates Definition 4.1: the magnitude of the coeffi-
cient ri,j is bounded with respect to both ri,i and rj,j .





. . .

ri,i
η←−−− ri,j

. . . ↓ θ

rj,j

. . .




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As in the previous section, we analyze the quantity χ(B, j) by looking at the
diagonal elements of the R-factor, i.e., the sequence of ri,i’s.

Theorem 4.2. Let B ∈ R
m×n with full column rank be (η, θ)-WSR for some η ≥ 0

and θ ≥ 0. Let R be its R-factor. For j = 1, . . . , n, we let r′j,j = rj,j/max1≤k≤j rk,k,

D′
j = diag(r′1,1, . . . , r

′
j,j) and ξD′

j
=

∏
1≤k<j max

(
r′

k+1,k+1

r′
k,k

, 1
)
. Then

(4.3) χ(B, j) ≤
√

2c2(j, η + θ)(1 + η + θ)jξD′
j

(
max

1≤k≤j
rk,k

)
/‖rj‖, j = 1, . . . , n.

Proof. Without loss of generality, we assume that r1,1 = max1≤k≤n rk,k. If this
is not the case, we divide the jth column of R by max1≤k≤j rk,k for j = 1, . . . , n.
Note that χ(B, j) is column-scaling invariant (see (2.17)), and that the quantities
(max1≤k≤j rk,k)/‖rj‖ and ξD′

j
are invariant under this particular scaling.

Let D = diag(ξD′
1
, . . . , ξD′

n
) and let R̄ = RD−1. As χ(B, j) is invariant under

column-scaling, we have χ(B, j) = χ(BD−1, j). The most important part of the
proof is to show that R̄ is η̄-size-reduced with η̄ = η + θ. Once this is established,
we will apply Theorem 3.2 to R̄ to derive (4.3).

We want to prove that for any i < j, we have |r̄i,j | ≤ η̄r̄i,i. Because of the (η, θ)-
WSR assumption, this will hold if

η
ri,i

ξD′
j

+ θ
rj,j

ξD′
j

≤ (η + θ)
ri,i

ξD′
i

.

Since ξD′
j
≥ ξD′

i
when j ≥ i, it suffices to prove that

rj,j

ξ
D′

j

≤ ri,i

ξ
D′

i

, or equivalently

that the sequence of the r̄i,i’s is non-increasing. This is equivalent to showing
that

rj,j

ξ
D′

j

≤ rj−1,j−1

ξ
D′

j−1

holds for any j ≥ 2, which is a direct consequence of the

definition of ξD′
j
.

We now apply Theorem 3.2 to BD−1. For any 1 ≤ j ≤ n, we have

χ(B, j) = χ(BD−1, j) ≤ c2(j, η̄)(1 + η̄)jζD̄′
j

(
max

1≤k≤j
r̄k,k

)
/‖r̄j‖,

with D̄′
j = diag

(
r̄i,i

max1≤k≤i r̄k,k

)

1≤i≤j
. The fact that the sequence of the r̄i,i’s is non-

increasing implies that D̄′
j = diag

(
r̄i,i

r̄1,1

)

1≤i≤j
. For the same reason, we have ζD̄′

j
≤

√
2. This also gives that max1≤k≤j r̄k,k = r1,1. Finally, we have ‖r̄j‖ = ‖rj‖/ξD′

j
=

‖rj‖/ξDj
. Since we assumed that r1,1 = max1≤k≤n rk,k, this completes the proof.

�

Remark 5. Naturally, as the assumption on B in Theorem 4.2 is weaker than in
Theorem 3.2, the bound obtained for χ(B, j) is weaker as well. Indeed, it is easy

to show that we always have ζD′
j
≤
√

2ξD′
j
. Furthermore, ξD′

j
can be arbitrarily

larger than ζD′
j
. For instance, consider {ri,i}1≤i≤5 defined by r1,1 = r3,3 = r5,5 =

1 and r2,2 = r4,4 = ε, where ε > 0 tends to 0. In this case, ζD′
j

= O(1/ε),

whereas ξD′
j

= O(1/ε2).

Remark 6. Similarly to size-reduced matrices, we cannot argue from the perturba-
tion results given in Corollary 2.4 and Theorem 4.2 that the weak size-reducedness
is preserved after the perturbation (cf. the discussion given at the beginning of
section 4). However, LLL-reduced matrices, which rely on weak size-reduction and
will be introduced in section 5, do not have this drawback.
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5. LLL Reduction is a Fix-Point Under Column-Wise Perturbation

In the present section, after some reminders on Euclidean lattices, we will in-
troduce a modification of the LLL reduction [12] which is compatible with the
perturbation analysis of the R-factor that we performed in the previous sections.

5.1. Background on Euclidean lattices. We give below the background on lat-
tices that is necessary to the upcoming discussion. For more details, we refer to [13].
A Euclidean lattice is the set of all integer linear combinations of the columns of a
full column rank basis matrix B ∈ R

m×n: L = {Bx,x ∈ Z
n}. The matrix B is said

to be a basis matrix of L and its columns are a basis of L. If n ≥ 2, a given lat-
tice has infinitely lattice bases, but they are related to one another by unimodular
transforms, i.e., by right-multiplication by n×n integer matrices of determinant ±1.
A lattice invariant is a quantity that does not depend on the particular choice of
a basis of a given lattice. The simplest such invariant is the lattice dimension n.
Let R be the R-factor of the basis matrix B. The determinant of the lattice L is
defined as the product of the diagonal entries of R: det(L) =

∏
1≤i≤n ri,i. Since

lattice bases are related by unimodular matrices, the determinant is a lattice in-
variant. Another important invariant is the minimum λ(L) defined as the norm of
a shortest non-zero vector of L.

Lattice reduction is a major paradigm in the theory of Euclidean lattices. The
aim is to find a basis of good quality of a lattice given by an arbitrary basis. One
usually targets orthogonality and norm properties. A simple reason why one is
interested in short vectors is that they require less space to store. One is interested
in basis matrices whose columns are fairly orthogonal relatively to their norms
(which can be achieved by requiring the off-diagonal ri,j ’s to be small and the
sequence of the ri,i’s to not decrease too fast), for several different reasons. For
example, it is crucial to bound the complexity of enumeration-type algorithms
that find shortest lattice vectors and closest lattice vectors to given targets in
the space [9, 5]. In 1982, Lenstra, Lenstra and Lovász [12] described a notion
of reduction, called LLL reduction, that can be reached in time polynomial in the
size of the input basis and that ensures some orthogonality and norm properties.
Their algorithm immediately had great impact on various fields of mathematics
and computer science (we refer to [20] for an overview).

Definition 5.1. Let η ∈ [1/2, 1) and δ ∈ (η2, 1]. Let B be a lattice basis matrix
and R be its R-factor. The basis matrix B is (δ, η)-LLL-reduced if it is η-size-
reduced and if for any i we have δ · r2

i,i ≤ r2
i,i+1 + r2

i+1,i+1.

Originally in [12], the parameter η was set to 1/2, but this condition was relaxed
later by Schnorr [22] to allow inaccuracies in the computation of the entries of the
matrix R. Allowing η > 1/2 does not change significantly the guaranteed quality of
LLL-reduced matrices (see below). The parameter δ was chosen to be 3/4 in [12],
because this simplifies the expressions of the constants appearing in the quality
bounds of (δ, 1/2)-LLL-reduced matrices (the α in Theorem 5.2 becomes

√
2). The

second condition in Definition 5.1 means that after projection onto the orthogonal
complement of the first i−1 columns, the ith one is approximately shorter (i.e., not
much longer) than the (i + 1)th. Together, the two conditions imply that the ri,i’s
cannot decrease too quickly and that the norm of the ith column is essentially ri,i

(up to a factor that depends only of the dimension). The theorem below gives the
main properties of LLL-reduced matrices.
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Theorem 5.2. Let η ∈ [1/2, 1) and δ ∈ (η2, 1]. Let α = 1√
δ−η2

. If B ∈ R
m×n is a

(δ, η)-LLL-reduced basis matrix of a lattice L, then we have:

rj,j ≤ α · rj+1,j+1, j = 1, . . . , n− 1,

‖bj‖ ≤ αj−1 · rj,j , j = 1, . . . , n,

‖b1‖ ≤ αn−1 · λ(L),

‖b1‖ ≤ α
n−1

2 · (det(L))
1
n ,

∏

1≤j≤n

‖bj‖ ≤ α
n(n−1)

2 · det(L).

We do not give a proof, since Theorem 5.2 is a simple corollary of Theorem 5.4.

5.2. A weakening of the LLL-reduction. LLL-reduction suffers from the same
drawback as size-reduction with respect to column-wise perturbations. If the ε
parameter of a column-wise perturbation is set as a function of n, then for any η′ >
η and any δ′ < δ, one may choose rk,k’s so that the initial basis is (δ, η)-LLL-
reduced but the perturbed basis cannot be guaranteed (δ′, η′)-size-reduced. Indeed,

consider the matrix

[
1 0
0 γ

]
, where γ grows to infinity. We can choose ∆r1,1 = 0

and ∆r1,2 = εγ. The latter grows linearly with γ and eventually becomes bigger
than any fixed η′, thus preventing the perturbed matrix from being size-reduced.

For this reason, we introduce a weakening of LLL-reduction that relies on weak-
size-reduction instead of size-reduction. This seems to be more coherent with the
approximate computation of the R-factor of the QR factorization by Householder
reflections, Givens rotations or the Modified Gram-Schmidt orthogonalization. The
weakening has the nice property that if a basis is reduced according to this defini-
tion and the corresponding R-factor is computed by any of these algorithms using
floating-point arithmetic, then it suffices to show that the basis is indeed reduced
according to this weakening (up to a small additional relaxation of the same type).
This relaxation is thus somehow a fix-point with respect to floating-point compu-
tation of the R-factor by these algorithms. We will make this statement precise in
Corollary 6.5. The need for such a weakening was discovered by Schnorr [23, 24],
though he did not define it formally nor proved any quality property.

Definition 5.3. Let η ∈ [1/2, 1), θ ≥ 0 and δ ∈ (η2, 1]. Let B be a lattice basis
matrix and R be its R-factor. The basis matrix B is (δ, η, θ)-LLL-reduced if it
is (η, θ)-WSR and if for any i we have: δ · r2

i,i ≤ r2
i,i+1 + r2

i+1,i+1.

Figure 2 illustrates the different definitions of LLL-reduction. If the ri,i’s are
decreasing, then a (δ, η, θ)-LLL-reduced basis matrix is (δ, η + θ)-reduced. The
weakening becomes more interesting when the ri,i’s do not decrease. In any case,
it does not worsen significantly the bounds of Theorem 5.2.
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Figure 2. The hashed area is the set of vectors b2 such that
(b1,b2) is (from left to right) (1, 0, 0)-LLL, (δ, 0, 0)-LLL, (δ, η, 0)-
LLL and (δ, η, θ)-LLL.

Theorem 5.4. Let η ∈ [1/2, 1), θ ≥ 0 and δ ∈ (η2, 1]. Let α =
θη+
√

(1+θ2)δ−η2

δ−η2 .

If B ∈ R
m×n is a (δ, η, θ)-LLL-reduced basis matrix of a lattice L, then we have

rj,j ≤ α · rj+1,j+1, j = 1, . . . , n− 1,(5.1)

‖bj‖ ≤ αj−1 · rj,j , j = 1, . . . , n,(5.2)

‖b1‖ ≤ αn−1 · λ(L),(5.3)

‖b1‖ ≤ α
n−1

2 · (det(L))
1
n ,(5.4)

∏

1≤j≤n

‖bj‖ ≤ α
n(n−1)

2 · det(L).(5.5)

Here α is always greater than or equal to 1√
δ−η2

, the value of α defined in

Theorem 5.2. However, when θ tends to 0, the former tends to the latter.

Proof. By the given conditions, we have:

δr2
j,j ≤ (ηrj,j + θrj+1,j+1)

2 + r2
j+1,j+1 ≤ η2r2

j,j + 2ηθrj,jrj+1,j+1 + (1 + θ2)r2
j+1,j+1.

This implies that x :=
rj,j

rj+1,j+1
satisfies the following degree-2 inequality:

(5.6) (δ − η2)x2 − 2ηθx− (1 + θ2) ≤ 0.

The discriminant is 4
(
(1 + θ2)δ − η2

)
> 0 and the leading coefficient is non-

negative. As a consequence, we have:

x ≤ θη +
√

(1 + θ2)δ − η2

δ − η2
= α,

leading to (5.1).
Now we show (5.2). From (5.6), we have (δ − η2)α2 − 2ηθα − (1 + θ2) = 0.

But δ ≤ 1. Thus (1−η2)α2−2ηθα−(1+θ2) ≥ 0, or equivalently (θ+ηα)2 ≤ α2−1.
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Using this fact and α ≥ 1 as well, we have

‖bj‖2 =
∑

1≤i≤j

r2
i,j ≤ r2

j,j +
∑

1≤i<j

(
η2 · r2

i,i + 2θη · rj,jri,i + θ2 · r2
j,j

)

≤
(
1 +

∑

1≤i<j

(η2α2(j−i) + 2θηαj−i + θ2)
)
· r2

j,j

≤
(
1 +

∑

1≤i<j

(η2α2 + 2θηα + θ2)α2(j−i−1)
)
· r2

j,j

≤
(
1 + (θ + ηα)

2 α2(j−1) − 1

α2 − 1

)
· r2

j,j ≤ α2(j−1) · r2
j,j ,

leading to (5.2).
From (5.1), we have rj,j ≥ α1−j · r1,1. Suppose that z ∈ Z

n satisfies zi 6= 0 while
zj = 0 for j = i + 1, . . . , n. Then

‖Bz‖ = ‖Rz‖ ≥ |ri,izi| ≥ ri,i ≥ α1−ir1,1 = α1−i‖b1‖.

We thus have λ(L) = minz∈Zn,z6=0 ‖Bz‖ ≥ α1−n‖b1‖, which proves (5.3).

Since det(L) =
∏

1≤j≤n rj,j ≥
∏

1≤j≤n(α1−j · r1,1) = α(n−1)n/2‖b1‖n, (5.4)

holds. The inequality (5.5) follows from (5.2). �

5.3. Application to LLL-reduced matrices. We first show that the assump-
tion of Theorem 2.3 is fulfilled for (δ, η, θ)-reduced basis matrices. To do this, we
bound cond2(R) for any upper triangular basis matrix R which is reduced.

Lemma 5.5. Let η, θ ≥ 0 and α ≥ 1. Suppose an upper triangular matrix R ∈
R

n×n with positive diagonal entries satisfies

(5.7) |ri,j | ≤ ηri,i + θrj,j , ri,i ≤ αri+1,i+1, j = i+1, . . . , n, i = 1, . . . , n− 1.

Then

(5.8) cond2(R) ≤ |1− η − θ|α + 1

(1 + η + θ)α− 1
(1 + η + θ)nαn.

Proof. In the proof, we will use the following fact a few times: for any strictly upper
triangular matrix U ∈ R

n×n, we have (I − U)−1 =
∑

0≤k<n Uk.

Write R = R̄ ·D, where D = diag(r1,1, . . . , rn,n) and r̄i,j =
ri,j

rj,j
for i ≤ j. From

the assumption (5.7) it follows that |r̄i,j | ≤ (ηαj−i + θ) for i < j. Define T to be
the strictly upper triangular matrix with ti,j = r̄i,j for i < j. Let J be the matrix
whose all entries are 0, except that all (i, i + 1) entries are 1’s. The matrix T is
nilpotent and satisfies

|T | ≤ (η + θ)
∑

1≤k<n

(αJ)k = (η + θ)αJ(I − αJ)−1.

Since R̄ = I + T , we have

|R̄| ≤ I + (η + θ)αJ(I − αJ)−1 = (I − (1− η − θ)αJ)(I − αJ)−1.
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Since T is strictly upper triangular, R̄−1 =
∑

0≤k<n(−T )k. As a consequence,

|R̄−1| ≤
∑

0≤k<n

|T |k ≤
∑

0≤k<n

[
(η + θ)αJ(I − αJ)−1

]k

=
[
I − (η + θ)αJ(I − αJ)−1

]−1

= (I − αJ) (I − (1 + η + θ)αJ)
−1

= (I − αJ)
∑

0≤k<n

(1 + η + θ)kαkJk.

using the fact that ‖J‖2 = 1, we obtain

∥∥|R̄|·|R̄−1|
∥∥

2
≤ ‖I − (1− η − θ)αJ‖2

∑

0≤k<n

∥∥(1 + η + θ)kαkJk
∥∥

2

≤ (|1− η − θ|α + 1)
∑

0≤k<n

(1 + η + θ)kαk

≤ |1− η − θ|α + 1

(1 + η + θ)α− 1
(1 + η + θ)nαn.

Using the equality cond2(R) = cond2(R̄) allows us to assert that (5.8) holds. �

Remark 7. Let R be the upper triangular matrix with ri,i = α−i and ri,j =
ηα−i(−1)i−j+1 for i < j. Then R satisfies (5.7) with θ = 0, and we have cond2(R) ≥
ηαn−1(1 + η)n−2, which is very close to the upper bound (5.8) with θ = 0. Indeed,
if we use the same notations as in the proof of Lemma 5.5, we have cond2(R) =
cond2(R̄) with R̄ = I + ηαJ − ηα2J2 + . . . = I + ηαJ(I + αJ)−1. Then R̄−1 =
I − ηαJ(I + (1 + η)αJ)−1. The proof is completed by noting that cond2(R̄) is
not smaller than the (1, n)-entry of |R̄| · |R̄−1|, which itself is not smaller than
ηαn−1(1 + η)n−2.

We now specialize our perturbation analysis of the previous sections to the case
of (δ, η, θ)-LLL-reduced basis matrices.

Theorem 5.6. Let η ∈ [1/2, 1), θ ≥ 0, δ ∈ (η2, 1] and α =
θη+
√

(1+θ2)δ−η2

δ−η2 .

Let B ∈ R
m×n be a (δ, η, θ)-LLL-reduced basis matrix and R be its R-factor.

Let ∆B ∈ R
m×n be a perturbation matrix satisfying (1.1), where ε satisfies

(5.9) c3(1 + η + θ)nαnε < 1,

with

(5.10) c3 =
(|1− η − θ|α + 1)m

√
n

((1 + η + θ)α− 1)(
√

3/2− 1)
.

Then B + ∆B has a unique R-factor R + ∆R and

(5.11) ‖∆rj‖ ≤
√

2c1(m, j)c2(j, η + θ)(1 + η + θ)jαkj rj,jε, j = 1, . . . , n,

where c1 and c2 are defined by (2.8) and (3.3), respectively, and kj is the number
of indices i such that i < j and ri,i > ri+1,i+1.
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Proof. From Lemma 5.5, we see that the condition (5.9) ensures that the assump-
tion (2.5) in Theorem 2.3 is satisfied. From Corollary 2.4 and Theorem 4.2 it follows
that

(5.12) ‖∆rj‖ ≤
√

2c1(m, j)c2(j, η + θ)ξD′
j
(1 + η + θ)j

(
max
1≤i≤j

ri,i

)
ε, j = 1, . . . , n,

where ξD′
j

=
∏j−1

i=1 max
(
r′i+1,i+1/r′i,i, 1

)
with r′j,j = rj,j/max1≤i≤j ri,i. If ri,i >

ri+1,i+1 holds, then with (5.1) we have r′i,i/r′i+1,i+1 = ri,i/ri+1,i+1 ≤ α, thus 1 ≤
α · r′i+1,i+1/r′i,i. Then it follows that

ξD′
j

=





j−1∏

i = 1
r′

i+1,i+1 ≥ r′
i,i

r′i+1,i+1

r′i,i




·





j−1∏

i = 1
r′

i,i > r′
i+1,i+1

α
r′i+1,i+1

r′i,i




≤ αkj

r′j,j
r′1,1

= αkj r′j,j ,

which, combined with (5.12), results in (5.11). �

Remark 8. It is also possible to obtain an upper bound on
‖∆rj‖

rj,j
by using (5.2),

Corollary 2.4 with D = I, and Lemma 5.5. This allows to circumvent the more
tedious analysis corresponding to sections 3 and 4. However, the bound obtained
in this way is (much) larger.

We can now conclude that the set of LLL-reduced matrices is a fix-point under
column-wise perturbations.

Corollary 5.7. Let η ∈ [1/2, 1), θ ≥ 0, δ ∈ (η2, 1] and α =
θη+
√

(1+θ2)δ−η2

δ−η2 .

Let B ∈ R
m×n be a (δ, η, θ)-LLL-reduced basis matrix. Let ∆B ∈ R

m×n be a
perturbation matrix satisfying (1.1), where ε is such that

ε′ := c4(1 + η + θ)nαnε < 1,

with

(5.13) c4 = max(c3,
√

2c1(m,n)c2(n, η + θ)),

and with c1, c2 and c3 defined by (2.8), (3.3) and (5.10), respectively. Then B+∆B
is (δ′, η′, θ′)-LLL-reduced with

δ′ = δ
(1− ε′)2

(1 + ε′)2(1 + 2ε′(ηα + θ))
, η′ =

η

1− ε′
and θ′ =

θ + ε′

1− ε′
.

Proof. Let R′ = R + ∆R be the R-factor of B + ∆B. From Theorem 5.6, it follows
that for all 1 ≤ i ≤ j ≤ n, we have |∆ri,j | ≤ ε′rj,j . Therefore,

(1− ε′)ri,i ≤ r′i,i ≤ (1 + ε′)ri,i and |r′i,j | ≤ ηri,i + (θ + ε′)rj,j .

As a consequence, we have |r′i,j | ≤ η
1−ε′ r

′
i,i + θ+ε′

1−ε′ r
′
j,j , which gives us the weak-size-

reduction. We also have

|r′i,i+1| ≥ |ri,i+1| − ε′ri+1,i+1

(r′i,i+1)
2 ≥ r2

i,i+1 − 2ε′|ri,i+1|ri+1,i+1

≥ r2
i,i+1 − 2ε′ (ηri,i + θri+1,i+1) ri+1,i+1

≥ r2
i,i+1 − 2ε′(ηα + θ)r2

i+1,i+1.
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Therefore:

δ

(1 + ε′)2
· (r′i,i)2 ≤ r2

i+1,i+1 + r2
i,i+1 ≤ r2

i+1,i+1 + (r′i,i+1)
2 + 2ε′(ηα + θ)r2

i+1,i+1

≤ 1 + 2ε′(ηα + θ)

(1− ε′)2
(
(r′i+1,i+1)

2 + (r′i,i+1)
2
)
.

This completes the proof. �

If the initial parameters δ, η and θ are such that η ∈ (1/2, 1), θ > 0, and δ ∈
(η2, 1), then ε can be chosen as a function of δ, η, θ,m and n so that the resulting
parameters δ′, η′, θ′ also satisfy the domain conditions η′ ∈ (1/2, 1), θ′ > 0 and δ′ ∈
((η′)2, 1). Overall, this means that the set of basis matrices that are (δ, η, θ)-LLL-
reduced for some parameters η ∈ (1/2, 1), θ > 0, and δ ∈ (η2, 1) is stable under
column-wise perturbations when ε is limited to a function of the parameters and the
dimensions m and n only. Note that if we fix θ = 0, we cannot guarantee that the
perturbed basis is reduced with θ′ = 0. This is why the weakened LLL-reduction
is more appropriate with respect to column-wise perturbations.

6. Practical Computation

In many cases, the perturbation matrix considered in a perturbation analysis
comes from a backward stability result on some algorithm. In the case of QR
factorization, the algorithms for which backward stability is established are the
Householder algorithm, the Givens algorithm and the Modified Gram-Schmidt al-
gorithm [8, §19]. In this section, we give a precise backward stability result for
Householder’s algorithm. We then apply it to LLL reduced bases. Similar results
hold for the Givens and Modified Gram-Schmidt algorithms.

6.1. Backward stability of Householder’s algorithm. Columnwise error anal-
ysis of the Householder QR factorization algorithm has been given in [8, §19]. But
the constant in the backward error bound is not precisely computed. However, this
information is crucial for some applications, such as the LLL reduction, since it will
allow one to select floating-point precision to provide correctness guarantees. The
purpose of the present section is to give a precise backward error bound. The model
of floating-point arithmetic that we use is formally described in [8, Eq. (2.4)].

Suppose we are given an m×n matrix B that has full column rank and that we
aim at computing its R-factor R. Householder’s algorithm proceeds column-wise
by transforming B to R. Suppose that after j steps we have transformed B into a
matrix of the following form:

(
B′

1,1 B′
1,2

0 B′
2,2

)
,

where B′
1,1 is an j×j upper triangular matrix with positive diagonal entries. In the

(j + 1)th step, we apply a Householder transformation Qj+1 (which is orthogonal)
to B′

2,2 from the left such that the first column of B′
2,2 becomes [×, 0, . . . , 0]T . For

the computation of the Householder transformation, see Figure 3, which gives two
variants and is taken from [8, Lemma 19.1] with some changes. The Householder

algorithm computes the full form of the QR factorization: B = Q

[
R
0

]
, where

Q ∈ R
m×m is orthogonal and R ∈ R

n×n is upper triangular. Some of the diagonal
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entries of R may be negative, but if we want them to be positive, we can multiply
the corresponding rows of R and columns of Q by −1.

Input: A vector b ∈ R
m.

Output: A vector v ∈ R
m such that Q = I − vvT is

orthogonal and Q · b = (±‖b‖, 0, . . . , 0)T .

1. v:=b.
2. s:=sign(b1) · ‖b‖.

3. v1:=b1 + s (variant A) or v1:=
−

Pm
i=2 b

2
i

b1+s
(variant B).

4. v:= 1√
s·v1

· v (variant A) or v:= 1√
−s·v1

· v (variant B).

Figure 3. Two variants of computing the Householder transformation.

The algorithm of Figure 3 is performed with floating-point arithmetic. The com-
putational details are straightforward, except for Step 3 of variant B: the numerator
is a term that appears in the computation of Step 2, and thus does not need being
re-computed. In our rounding error analysis, all given numbers are assumed to be
real numbers (so they may not be floating-point numbers), and all algorithms are
assumed to be run with unit roundoff u, i.e., u = 2−p, where p is the precision. We
use a hat to denote a computed quantity. For convenience, we use δ to denote a
quantity satisfying |δ| ≤ u. The quantity γm := mu

1−mu will be used a few times.
The computations of some bounds contained in the proofs of the following lemmas
were performed by MAPLE. The corresponding MAPLE work-sheet is available at
http://perso.ens-lyon.fr/damien.stehle/RPERTURB.html.

The following lemma is a modified version of [8, Lemma 19.1].

Lemma 6.1. Suppose we run either variant of the algorithm of Figure 3 on a
nonzero vector b ∈ R

m with unit roundoff u satisfying c5 ·u ≤ 1, where:

(6.1) c5 = 4(6m + 63) for variant A, and c5 = 8(6m + 39) for variant B.

Let v̂ be the computed vector and v be the vector that would have been computed
with infinite precision. Then v̂ = v + ∆v with |∆v| ≤ (m + 11)u · |v| for variant A
(resp. |∆v| ≤ 1

2 (5m + 29)u · |v| for variant B).

Proof. Let c = bT b. Then ĉ = fl(b̂T b̂) where |b̂ − b| ≤ u|b|. By following [8,
p. 63], it is easy to verify that

(6.2)
|ĉ− c|
|c| ≤ γm+2.

Note that the above result is different from [8, Eq. (3.5)], since here the bi’s are not
assumed to be floating-point numbers. Since γm+2 < 1, using (6.2) we have

(6.3)
|
√

ĉ−√c|√
c

=
|ĉ− c|√

c

1√
ĉ +
√

c
≤ |ĉ− c|

2c
√

1− γm+2
≤ γm+2

2
√

1− γm+2
=: β1.

Then it follows that at Step 2,

(6.4)
|ŝ− s|
|s| =

|
√

ĉ(1 + δ)−√c|√
c

≤ (1 + β1)(1 + u)− 1 =: β2.
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We now consider variants A and B of the algorithm separately. For variant A
and at Step 3, the quantities b1 and s have the same sign, so |b1| + |s| = |b1 + s|.
Thus, using (6.4) we have

|v̂1 − v1|
|v1|

=
|(b̂1 + ŝ)(1 + δ)− (b1 + s)|

|b1 + s| ≤ |b̂1(1 + δ)− b1|+ |ŝ(1 + δ)− s|
|b1 + s|

≤ |b1|[(1 + u)2 − 1] + |s|[(1 + β2)(1 + u)− 1]

|b1 + s| ≤ (1 + β2)(1 + u)− 1 =: β3,

(6.5)

Then, using (6.4) and (6.5) we have

(6.6)
|d̂− d|
|d| =

|ŝv̂1(1 + δ)− sv1|
|sv1|

≤ (1 + β2)(1 + β3)(1 + u)− 1 =: β4.

The MAPLE work-sheet shows that β4 < 1. Let e =
√

d =
√

sv1. Then, by the
same derivation for (6.4) (see (6.3)), using (6.6) we have

(6.7)
|ê− e|
|e| =

|
√

d̂ (1 + δ)−
√

d|√
d

≤
(

1 +
β4

2
√

1− β4

)
(1 + u)− 1 := β5.

The MAPLE work-sheet shows that β5 < 1. Then from (6.5) and (6.7) we obtain
the following componentwise bound:

(6.8) |v̂ − v| ≤
(

1 + β3

1− β5
(1 + u)− 1

)
|v| = β6|v|,

where β6 = 1+β3

1−β5
(1 + u)− 1 ≤ (m + 11)u, as indicated by the MAPLE work-sheet.

Now we consider variant B. The quantity
∑m

i=2 b2
i from Step 3 has been computed

at Step 2. The relative error in the computed value is bounded by γm+1. Thus,
using this fact and (6.5) (for the denominator) we conclude that

(6.9)
|v̂1 − v1|
|v1|

≤ 1 + γm+1

1− β3
(1 + u)− 1 =: β′

3.

According to the MAPLE work-sheet, we have β′
3 < 1. The rest analysis is similar

to the derivation for (6.6)–(6.8) and we have the following componentwise bound:

(6.10) |v̂ − v| ≤
(

1 + β′
3

1− β′
5

(1 + u)− 1

)
|v| = β′

6|v|,

where β′
5 =

(
1 +

β′
4

2
√

1−β′
4

)
(1 + u)− 1, β′

4 = (1 + β2)(1 + β′
3)(1 + u)− 1 and β′

6 :=

1+β′
3

1−β′
5
(1 + u)− 1. The MAPLE work-sheet shows that β′

6 ≤ 1
2 (5m + 29)u. �

At step j + 1 of the QR factorization, once the Householder vector v is com-
puted, the Householder matrix is applied to all the remaining column vectors of the
matrix B′

2,2. The following lemma, a modified version of [8, Lemma 19.2], provides
a backward analysis for this step.

Lemma 6.2. Suppose that the assumptions of Lemma 6.1 hold. Let c ∈ R
m,

Q = I−vvT and y = Qc = c−v(vT c). In computing y, the computed Householder
vector v̂ is used. Then there exists ∆Q ∈ R

m×m such that

(6.11) ŷ = (Q + ∆Q)c and ‖∆Q‖F ≤
1

4
c5u.
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Proof. The proofs for both variants of the algorithm of Figure 3 are the same, so
we only consider variant A. Let t = vT c. Then t̂ = fl(v̂T ĉ), where |ĉ − c| ≤ u|c|
and |v̂−v| ≤ β6|v|, by Lemma 6.1. Then by following the derivation of [8, Eq. (3.4)],
we can show that

(6.12) |t̂− t| ≤ [(1 + β6)(1 + u)(1 + γm)− 1] |v|T |c| = β7|v|T |c|,
where β7 := (1+β6)(1+u)(1+γm)−1. Let w = v(vT c) = vt. Then ŵ = v̂t̂(1+δ).
Using (6.8), (6.10) and (6.12) we obtain the following bound:

|ŵ −w| ≤ ((1 + β6)(1 + β7)(1 + u)− 1) |v||v|T |c| = β8|v||v|T |c|,
where β8 = (1 + β6)(1 + β7)(1 + u)− 1. Then it follows that

(6.13) |ŷ−y| = |fl(ĉ−ŵ)−(c−w)| ≤ [(1+u)2−1]|c|+[(1+β8)(1+u)−1]|v||v|T |c|.
Note that the Householder vector v satisfies ‖v‖ =

√
2. Thus from (6.13) it follows

that

‖ŷ − y‖ ≤ [(1 + u)2 − 1]‖c‖+ 2[(1 + β8)(1 + u)− 1]‖c‖ = β9‖c‖,
where β9 = (1 + u)2 + 2(1 + β8)(1 + u) − 3. We can write ŷ = (Q + ∆Q)c

with ∆Q = (ŷ−y)cT

cT c
. We have ‖∆Q‖F = ‖ŷ−y‖

‖c‖ ≤ β9. In the MAPLE work-sheet,

we see that β9 ≤ 1
4c5u, and thus (6.11) holds. �

The following lemma is a modified version of [8, Lemma 19.3]. It considers error
analysis of a sequence of Householder matrices applied to a given matrix.

Lemma 6.3. Let B ∈ R
m×n and let Qi = I − viv

T
i for i ≤ n be a sequence

of Householder matrices. We consider the sequence of transformations Bi+1 =
QiBi, with B1 = B. Suppose that these transformations are performed by using the
computed Householder vectors v̂i with unit roundoff u. Let

(6.14) c6 =
1

2
nc5,

with c5 defined by (6.1). If c6u ≤ 1, then the computed matrix B̂n+1 satisfies

B̂n+1 = QT (B + ∆B),

where QT = QnQn−1 . . . Q1 and

(6.15) ‖∆bj‖ ≤ c6u‖bj‖, j = 1, . . . , n.

Proof. Let b
(n+1)
j be the jth column of Bn+1. From Lemma 6.2 it follows that

there exist ∆Q1, . . . ,∆Qn ∈ R
m×m such that

b̂
(n+1)
j = (Qn + ∆Qn) . . . (Q1 + ∆Q1)bj and ‖∆Qi‖F ≤

1

4
c5u.

Write QT + ∆QT = (Qn + ∆Qn) . . . (Q1 + ∆Q1). Then by [8, Lemma 3.7] we have

‖∆QT ‖F ≤
(
1 +

1

4
c5u

)n

− 1 ≤
1
4c5nu

1− 1
4c5nu

≤ c6u.

Define ∆bj = Q∆QT bj . Then

b̂
(n+1)
j = QT bj + ∆QT bj = QT (bj + ∆bj) and ‖∆bj‖ ≤ c6u‖bj‖.

�
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We can now conclude with a version of [7, Th. 18.4] (or [8, Th. 19.4], in the
newer edition), with generic constants replaced by explicit constants.

Theorem 6.4. Let R̂ be the computed R-factor of the QR factorization of a given
matrix B ∈ R

m×n by the Householder algorithm, with unit roundoff u. If c6u ≤ 1
with c6 = 2n(6m + 63) for variant A and 4n(6m + 39) for variant B, then there
exists an orthogonal matrix Q ∈ R

m×m such that

B + ∆B = Q

[
R̂
0

]
and ‖∆bj‖ ≤ c6u‖bj‖, j = 1, . . . , n.

The latter implies that |∆B| ≤ c6uC|B|, where ci,j = 1 for all i, j. The matrix Q
is given explicitly by QT = QnQn−1 . . . Q1, where Qi is the Householder matrix
corresponding to the exact application of the ith step of the Householder algorithm

to B̂i.

Proof. As a direct consequence of Lemma 6.3, we have:

B + ∆B = Q

[
R̂
0

]
and ‖∆bj‖ ≤ c6u‖bj‖, j = 1, . . . , n,

with Q = QT
1 QT

2 . . . QT
n . Then

|∆bi,j | ≤ c6u‖bj‖ ≤ c6u‖bj‖1 = c6ueT |bj |,
where e = [1, . . . , 1]T . We thus have |∆bj | ≤ c6ueeT |bj | for all j, which gives
|∆B| ≤ c6uC|B| since C = eeT . �

6.2. Application to LLL-reduced matrices. By using Theorem 6.4 and Corol-
lary 5.7, we have the following result on LLL-reduced bases.

Corollary 6.5. Let η ∈ [1/2, 1], θ ≥ 0, δ ∈ (η2, 1] and α =
θη+
√

(1+θ2)δ−η2

δ−η2 .

Let B ∈ R
m×n be a (δ, η, θ)-LLL-reduced basis matrix. Let u be such that

u′ := c7(1 + η + θ)nαnu < 1,

where c7 = c4c6 and with c4 defined by (5.13) and c6 defined by (6.14). Suppose
we compute the R-factor of B with the algorithm described in Subsection 6.1. Then

the computed matrix R̂ is (δ′, η′, θ′)-LLL-reduced with

δ′ = δ
(1− u′)2

(1 + u′)2(1 + 2u′(ηα + θ))
, η′ =

η

1− u′
, θ′ =

θ + u′

1− u′
.

Proof. From Theorem 6.4, we know that (1.1) holds with ε = c6u. The result
directly follows from Corollary 5.7. �

The weakening of the LLL-reduction is stable under Householder’s algorithm: if
the input basis is reduced, then so is the output basis (with slightly relaxed factors).

7. Concluding Remarks

We investigated the sensitivity of the R-factor of the QR-factorisation under
column-wise perturbations, which correspond to the backward stability results
of the standard QR factorization algorithms. We focused on the case of LLL-
reduced matrices, and showed that if the classical definition of LLL-reducedness
is sligthly modified, then LLL-reducedness is preserved under column-wise pertur-
bations. This implies that by computing the R-factor of a reduced matrix with a
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standard floating-point QR factorization algorithm (e.g., Householder’s algorithm),
then one can numerically check that the LLL conditions (5.3) are indeed satis-
fied, for slightly degraded parameters. These certified reduction parameters can be
made arbitrarily close to the actual reduction parameters by setting the precision
sufficiently high. Importantly, the required precision for the above to be valid is
linear with respect to the dimension, and does not depend on the magnitudes of
the matrix entries. This study was motivated by its algorithmic implications: the
results may be used to efficiently check the LLL-reducedness of a basis and to speed
up the LLL-reduction process.
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