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Fully Homomorphic Encryption [RAD’78,Gentry’09]

I FHE lets you do this:

µ Eval(f) f(µ)

A cryptographic “holy grail” with countless applications.

First solved in [Gentry’09], followed by
[vDGHV’10,BV’11a,BV’11b,BGV’12,B’12,GSW’13,. . . ]

I “Naturally occurring” schemes are somewhat homomorphic (SHE):
can only evaluate functions of an a priori bounded depth.

µ Eval(f) f(µ) Eval(g) g(f(µ))

I Thus far, “bootstrapping” is required to achieve unbounded FHE.
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Bootstrapping: SHE → FHE [Gentry’09]

I Homomorphically evaluates the SHE decryption function to “refresh”
a ciphertext µ , allowing further homomorphic operations.

sk Eval
(

Dec
(
· , µ

) )
µ

I Error growth of bootstrapping determines cryptographic assumptions.

State of the art [BGV’12,B’12,GSW’13]:

F Homom Addition: Error grows additively.

F Homom Multiplication: Error grows by poly(λ) factor.

I Known decryption circuits have logarithmic O(log λ) depth.
=⇒ Quasi-polynomial λO(log λ) error growth and lattice approx factors

I Can we do better?
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Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan’14]

I Error growth for multiplication in [GSW’13] is asymmetric:

Error in C := C1 d C2 is e := e1 · poly(λ) + µ1 · e2.

I Make multiplication right-associative:

C1 d (· · · (Ct−2 d (Ct−1 d Ct)) · · · ) has error
∑

i ei · poly(λ)

I Barrington’s Theorem

0

0

1

(P0,1)

(P0,0)

(P1,1)

(P1,0)

. . .

. . .

(P14,1)

(P14,0)

(P15,1)

(P15,0)

7 Problem: Barrington’s transformation is very inefficient.
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Our Results

1 Faster bootstrapping with small polynomial error growth

F Treats decryption as an arithmetic function over Zq, not a circuit.

Avoids Barrington’s Theorem – but still uses permutation matrices!

F Key Idea: Embed additive group (Zq,+) into small symmetric group

Reference # Homom Ops Noise Growth

[GHS’12,AP’13] (packing) Õ(1) 4 λO(log λ)

[BV’14] Õ(λ6) large poly(λ)

This work Õ(λ) 4 Õ(λ2)

2 Variant of [GSW’13] encryption scheme

F Very simple description and error analysis

F Enjoys full re-randomization of error as a natural side effect

Cf. [BV’14]: partial re-randomization, using extra key material
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Simpler GSW Variant

I “Gadget” Zq-matrix G [MP’12]: for any Zq-matrix A,

G−1(A) is short and G ·G−1(A) = A (mod q).

I Ciphertext encrypting µ ∈ {0, 1} under s is a Zq-matrix C satisfying

sC = µ · sG+ e (mod q).

I Homomorphic multiplication: C1 d C2 := C1 ·G−1(C2).

sC1 ·G−1(C2) = (µ1 · sG+ e1) ·G−1(C2)

= µ1 · sC2 + e1 ·G−1(C2)

= µ1µ2 · sG+ µ1 · e2 + e1 ·G−1(C2)︸ ︷︷ ︸
new error

.

I Old method [GSW’13]: G−1 is deterministic bit decomposition.

I New: G−1 samples a (random) subgaussian preimage.

⇒ Tight O(
√
n) error growth, full rerandomization of error
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Overview of Our Bootstrapping Algorithm

I Decryption in LWE-based schemes can be expressed as

Decs(c) := b〈s, c〉e2 ∈ {0, 1} with s ∈ Znq , c ∈ {0, 1}
n

1 Prepare: Encrypt each sj ∈ Zq under a certain group embedding.

Bootstrapping procedure uses two homomorphic algorithms:

a ‘ b = a+ b and Equals( v , z) =

{
1 if v = z

0 otherwise

Given ciphertext c ∈ {0, 1}n and encryptions sj , evaluate:

2 Inner Product: compute v := 〈 s , c〉 =
ð

j: cj=1

sj

3 Round: compute bve2 :=
ð

z: bze2=1

Equals( v , z)

I Remains to implement
Ð

and Equals for plaintext space Zq.

7 / 10
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Warmup: Embedding (Zq,+) into (Sq, ·)

Zq 0 1 . . . q − 1

Sq


1

1 1

0

1

...

. . .

0

1




0 1

1

1

1

...

. . .

0

1

 . . .



0

1

1

... 1

. . .

0

1

1

1



P0 P1 . . . Pq−1

I Addition: a ‘ b implemented as Pa d Pb = Pa · Pb

F Recall: Right-associative multiplication yields polynomial error growth.

I Equality test: Equals( a , b): take bth entry from first column of Pa .
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Embedding (Zq,+) into Smaller Symmetric Groups
I Let q = p1 · · · pt = Õ(λ) for distinct prime pi.

F Prime Number Theorem allows pi, t = O(log λ).

Chinese Remainder Theorem: Zq ∼= Zp1 × · · · × Zpt

I New embedding:

Zq → Sp1 × · · · × Spt
x 7→ (Px mod p1 , . . . , Px mod pt)

I Addition: same as in warmup, but component-wise

I Equality test:

Equalsq( a , b) =
ô

i

Equalspi( ai , b mod pi)

I Bottom line: Õ(λ) homomorphic operations to bootstrap.
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Open Problems
I Can we bootstrap in sublinear homom ops with polynomial error?

F Barrier in [GSW’13]: single-bit encryption (no “packing”)

I Circular security for unbounded FHE?

F Does our representation help or hurt security?

Thanks!
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