Faster Bootstrapping with
Polynomial Error

Jacob Alperin-Sheriff Chris Peikert

School of Computer Science
Georgia Tech

CRYPTO 2014
19 August 2014

10

Fully Homomorphic Encryption [RAD'78,Gentry'09]

> FHE lets you do this:

) (E)— 1

A cryptographic “holy grail” with countless applications.

First solved in [Gentry'09], followed by
[VDGHV'10,BV'11a,BV'11b,BGV'12,B'12,GSW'13,. . .]

Fully Homomorphic Encryption [RAD'78,Gentry'09]
> FHE lets you do this:

) (E)— 1

A cryptographic “holy grail” with countless applications.

First solved in [Gentry'09], followed by

[vDGHV'10,BV’'11a,BV’'11b,BGV'12,B'12,GSW'13,. . .]

» “Naturally occurring” schemes are somewhat homomorphic (SHE):
can only evaluate functions of an a priori bounded depth.

Fully Homomorphic Encryption [RAD'78,Gentry'09]
> FHE lets you do this:

) (E)— 1

A cryptographic “holy grail” with countless applications.

First solved in [Gentry'09], followed by
[VDGHV'10,BV'11a,BV'11b,BGV'12,B'12,GSW'13,. . .]

» “Naturally occurring” schemes are somewhat homomorphic (SHE):
can only evaluate functions of an a priori bounded depth.

» Thus far, "bootstrapping” is required to achieve unbounded FHE.

Bootstrapping: SHE — FHE [Gentry'09]

» Homomorphically evaluates the SHE decryption function to “refresh”
a ciphertext , allowing further homomorphic operations.

—>[EvaI<Dec<-,)>]_>

/10

Bootstrapping: SHE — FHE [Gentry'09]

» Homomorphically evaluates the SHE decryption function to “refresh”
a ciphertext , allowing further homomorphic operations.

5] — | i Dec(- 1)) | —

» Error growth of bootstrapping determines cryptographic assumptions.

10

Bootstrapping: SHE — FHE [Gentry'09]

» Homomorphically evaluates the SHE decryption function to “refresh”
a ciphertext , allowing further homomorphic operations.

5] — | i Dec(- 1)) | —

» Error growth of bootstrapping determines cryptographic assumptions.

State of the art [BGV'12,B'12,GSW'13]:

10

Bootstrapping: SHE — FHE [Gentry'09]

» Homomorphically evaluates the SHE decryption function to “refresh”
a ciphertext , allowing further homomorphic operations.

5] — | i Dec(- 1)) | —

» Error growth of bootstrapping determines cryptographic assumptions.

State of the art [BGV'12,B'12,GSW'13]:

* Homom Addition: Error grows additively.

10

Bootstrapping: SHE — FHE [Gentry'09]

» Homomorphically evaluates the SHE decryption function to “refresh”
a ciphertext , allowing further homomorphic operations.

5] — | i Dec(- 1)) | —

» Error growth of bootstrapping determines cryptographic assumptions.

State of the art [BGV'12,B'12,GSW'13]:
* Homom Addition: Error grows additively.

* Homom Multiplication: Error grows by poly(\) factor.

10

Bootstrapping: SHE — FHE [Gentry'09]

» Homomorphically evaluates the SHE decryption function to “refresh”
a ciphertext , allowing further homomorphic operations.

5] — | i Dec(- 1)) | —

» Error growth of bootstrapping determines cryptographic assumptions.

State of the art [BGV'12,B'12,GSW'13]:

* Homom Addition: Error grows additively.
* Homom Multiplication: Error grows by poly(\) factor.

» Known decryption circuits have logarithmic O(log A) depth.

10

Bootstrapping: SHE — FHE [Gentry'09]

» Homomorphically evaluates the SHE decryption function to “refresh”
a ciphertext , allowing further homomorphic operations.

5] — | i Dec(- 1)) | —

» Error growth of bootstrapping determines cryptographic assumptions.
State of the art [BGV'12,B'12,GSW'13]:

* Homom Addition: Error grows additively.
* Homom Multiplication: Error grows by poly(\) factor.

» Known decryption circuits have logarithmic O(log A) depth.
— Quasi-polynomial \?1°2Y) error growth and lattice approx factors

Bootstrapping: SHE — FHE [Gentry'09]

» Homomorphically evaluates the SHE decryption function to “refresh”
a ciphertext , allowing further homomorphic operations.

5] — | i Dec(- 1)) | —

» Error growth of bootstrapping determines cryptographic assumptions.
State of the art [BGV'12,B'12,GSW'13]:

* Homom Addition: Error grows additively.
* Homom Multiplication: Error grows by poly(\) factor.

» Known decryption circuits have logarithmic O(log A) depth.
— Quasi-polynomial A2°gA) error growth and lattice approx factors

» Can we do better?

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]
» Error growth for multiplication in [GSW'13] is asymmetric:

Error in C:= C;[[1C; is e := e; - poly(\) + 1 - ex.

/10

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]
» Error growth for multiplication in [GSW'13] is asymmetric:
Error in C := C;[[]Cy is e := ey - poly(\) + p1 - es.
> Make multiplication right-associative:

Ci(- (Ci—2[(Ci—1[Cy)) -+ -) has error 3, e; - poly(A)

10

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]
» Error growth for multiplication in [GSW'13] is asymmetric:
Error in C := C;[[]Cy is e := ey - poly(\) + p1 - es.
> Make multiplication right-associative:

Ci(- (Ci—2[(Ci—1[Cy)) -+ -) has error 3, e; - poly(A)

» Barrington’'s Theorem

(Po,1) (P1,1) e (P14,1) (P15,1)

>

(Po,0) (P1,0) e (P14,0) (P15,0)

depth d length 4¢

10

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]
» Error growth for multiplication in [GSW'13] is asymmetric:
Error in C := C;[[]Cy is e := ey - poly(\) + p1 - es.
> Make multiplication right-associative:
Ci(-- - (Ci—2I(Cy—1[Cy)) -+) has error). e; - poly(N)

» Barrington’'s Theorem

0

(Po,1) (P11) — -+ (P1a,1) (P15,1)
0 => /

(Po,o) (P1,0) (P14,0) — (Pi15,0)
1

depth d length 4¢

10

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]
» Error growth for multiplication in [GSW'13] is asymmetric:
Error in C:=C;[[]Cy is e:= e - poly(A) + p1 - e
> Make multiplication right-associative:
Ci(-- - (Ci—2I(Cy—1[Cy)) -+) has error). e; - poly(N)

» Barrington’'s Theorem

0
(Po,1) (P1g1) — - (P1a,1) (P15,1)
0 => /
. (Po,o) (P1,0) (P14,0) — (Pi15,0)
depth d =~ 3log A length 479 ~ \O

X Problem: Barrington’s transformation is very inefficient.

10

Our Results

@ Faster bootstrapping with small polynomial error growth

/10

Our Results

@ Faster bootstrapping with small polynomial error growth

* Treats decryption as an arithmetic function over Z,, not a circuit.

10

Our Results

@ Faster bootstrapping with small polynomial error growth

* Treats decryption as an arithmetic function over Z,, not a circuit.
Avoids Barrington's Theorem — but still uses permutation matrices!

10

Our Results

@ Faster bootstrapping with small polynomial error growth

* Treats decryption as an arithmetic function over Z,, not a circuit.
Avoids Barrington's Theorem — but still uses permutation matrices!

* Key Idea: Embed additive group (Z4, +) into small symmetric group

5/10

Our Results

@ Faster bootstrapping with small polynomial error growth

* Treats decryption as an arithmetic function over Z,, not a circuit.
Avoids Barrington's Theorem — but still uses permutation matrices!

* Key |dea: Embed additive group (Z,, +) into small symmetric group
=y e q

Reference # Homom Ops | Noise Growth
[GHS'12,AP'13] (packing) o) v \O(log A)
[BV'14] O(\%) large poly ()
This work o\ v O(\?)

5/10

Our Results

@ Faster bootstrapping with small polynomial error growth

* Treats decryption as an arithmetic function over Z,, not a circuit.
Avoids Barrington's Theorem — but still uses permutation matrices!

* Key |dea: Embed additive group (Z,, +) into small symmetric group
=y e q

Reference # Homom Ops | Noise Growth
[GHS'12,AP'13] (packing) o) v \O(log A)
[BV'14] O(\%) large poly ()
This work o\ v O(\?)

® Variant of [GSW'13] encryption scheme

5/10

Our Results

@ Faster bootstrapping with small polynomial error growth

* Treats decryption as an arithmetic function over Z,, not a circuit.
Avoids Barrington's Theorem — but still uses permutation matrices!

* Key |dea: Embed additive group (Z,, +) into small symmetric group
=y e q

Reference # Homom Ops | Noise Growth
[GHS'12,AP'13] (packing) o) v \O(log A)
[BV'14] O(\%) large poly ()
This work o\ v O(\?)

® Variant of [GSW'13] encryption scheme
* Very simple description and error analysis

5/10

Our Results

@ Faster bootstrapping with small polynomial error growth

* Treats decryption as an arithmetic function over Z,, not a circuit.
Avoids Barrington's Theorem — but still uses permutation matrices!

* Key |dea: Embed additive group (Z,, +) into small symmetric group
=y e q

Reference # Homom Ops | Noise Growth
[GHS'12,AP'13] (packing) o) v \O(log A)
[BV'14] O(\%) large poly ()
This work o\ v O(\?)

® Variant of [GSW'13] encryption scheme
* Very simple description and error analysis

* Enjoys full re-randomization of error as a natural side effect

Cf. [BV'14]: partial re-randomization, using extra key material

5/10

Simpler GSW Variant
> “Gadget” Zg-matrix G [MP'12]: for any Zg,-matrix A,

G '(A)isshort and G-G '(A)= A (mod q).

10

Simpler GSW Variant
> “Gadget” Zg-matrix G [MP'12]: for any Zg,-matrix A,
G '(A)isshort and G-G '(A)= A (mod q).
» Ciphertext encrypting p € {0,1} under s is a Z,-matrix C satisfying

sC=p-sG+e (modgq).

Simpler GSW Variant
> “Gadget” Zg-matrix G [MP'12]: for any Zg,-matrix A,
G '(A)isshort and G-G '(A)= A (mod q).
» Ciphertext encrypting p € {0,1} under s is a Z,-matrix C satisfying
sC=p-sG+e (modgq).
» Homomorphic multiplication: C;[]Cy := C; - Gfl(Cg).
sC1 -G HCy) = (u1-sG +e1)- G HCy)
=y -sCy +e; - G H(Cy)
= ppz - SG+ py e+ e - GTH(Cy).

v

new error

10

Simpler GSW Variant
> “Gadget” Zg-matrix G [MP'12]: for any Zg,-matrix A,
G '(A)isshort and G-G '(A)= A (mod q).
» Ciphertext encrypting p € {0,1} under s is a Z,-matrix C satisfying
sC=p-sG+e (modgq).
» Homomorphic multiplication: C;[]Cy := C; - Gfl(Cg).
sC1 -G HCy) = (u1-sG +e1)- G HCy)
=y -sCy +e; - G H(Cy)
= pip2 -G +p1-es +ep - GH(Cy) .

v

new error

» Old method [GSW'13]: G~! is deterministic bit decomposition.

10

Simpler GSW Variant
> “Gadget” Zg-matrix G [MP'12]: for any Zg,-matrix A,
G '(A) is short and G -G '(A)= A (mod q).
» Ciphertext encrypting p € {0,1} under s is a Z,-matrix C satisfying
sC=p-sG+e (modgq).
» Homomorphic multiplication: C;[]Cy := C; - Gfl(Cg).

sC1 -G HCy) = (u1-sG +e1)- G HCy)
=y -sCy +e; - G H(Cy)
= pip2 -G +p1-es +ep - GH(Cy) .

v

new error

» Old method [GSW'13]: G~! is deterministic bit decomposition.

» New: G~! samples a (random) subgaussian preimage.
= Tight O(y/n) error growth, full rerandomization of error

6

10

Overview of Our Bootstrapping Algorithm

» Decryption in LWE-based schemes can be expressed as

Decs(c) := [(s,c)], € {0,1} with s € Zj, c € {0,1}"

/10

Overview of Our Bootstrapping Algorithm

» Decryption in LWE-based schemes can be expressed as

Decs(c) := [(s,c)], € {0,1} with s € Zj, c € {0,1}"

@ Prepare: Encrypt each s; € Z, under a certain group embedding.

/10

Overview of Our Bootstrapping Algorithm

Decs(c) := [(s,c)], € {0,1} with s € Z7, ¢ € {0,1}"

» Decryption in LWE-based schemes can be expressed as }
q)

@ Prepare: Encrypt each s; € Z, under a certain group embedding.

Bootstrapping procedure uses two homomorphic algorithms:

£
@@: and Equals(’z):{ ifv=z

[0] otherwise

Overview of Our Bootstrapping Algorithm

» Decryption in LWE-based schemes can be expressed as
Decs(c) := [(s,c)], € {0,1} with s € Zj, c € {0,1}" J

@ Prepare: Encrypt each s; € Z, under a certain group embedding.

Bootstrapping procedure uses two homomorphic algorithms:

£
@@: and Equals(,z):{ if v z

[0] otherwise

Given ciphertext ¢ € {0,1}" and encryptions , evaluate:

@® Inner Product: compute [v]:= = H [s

Jici=1

Overview of Our Bootstrapping Algorithm

» Decryption in LWE-based schemes can be expressed as
Decs(c) := [(s,c)], € {0,1} with s € Zj, c € {0,1}" J

@ Prepare: Encrypt each s; € Z, under a certain group embedding.

Bootstrapping procedure uses two homomorphic algorithms:

£
@@: and Equals(,z):{ if v z

[0] otherwise

Given ciphertext ¢ € {0,1}" and encryptions , evaluate:

@® Inner Product: compute [v]:= = H [s

Jici=1

©® Round: compute | |v], |:= Equals([v], 2)

z: |z]=1

Overview of Our Bootstrapping Algorithm

» Decryption in LWE-based schemes can be expressed as
Decs(c) := [(s,c)], € {0,1} with s € Zj, c € {0,1}"

@ Prepare: Encrypt each s; € Z, under a certain group embedding.

Bootstrapping procedure uses two homomorphic algorithms:

£
@@: and Equals(,z):{ if v z

[0] otherwise

Given ciphertext ¢ € {0,1}" and encryptions , evaluate:

@® Inner Product: compute [v]:= = H [s

Jici=1

©® Round: compute | |v], |:= Equals([v], 2)

z: |z]=1

P> Remains to implement and Equals for plaintext space Zj.

10

Warmup: Embedding (Z,, +) into (S,)

qg—1

10

Warmup: Embedding (Z,, +) into (S,)

Zq 0 1 g—1
1 1
o] 1 :
S, o -
. . n 1
1 1

Warmup: Embedding (Z,, +) into (S,)

Zq 0 1 g—1
! !
Tl o)
! !

P,

» Addition: @@ implemented as ‘ P, ‘E‘Pb ‘ = ‘ P, Pb‘

* Recall: Right-associative multiplication yields polynomial error growth.

10

Warmup: Embedding (Z,, +) into (S,)

Zg 0 1 q—1
1 L

g 1 :

L L 1
L L

P,

» Addition: @@ implemented as ‘ P, ‘E‘Pb ‘ = ‘ P, Pb‘
* Recall: Right-associative multiplication yields polynomial error growth.

» Equality test: Equals([a],b): take bth entry from first column of .

Warmup: Embedding (Z,, +) into (S,)

Zg 0 1 q—1
1 L

g 1 :

L L 1
L L

P,

» Addition: @@ implemented as ‘ P, ‘E‘Pb ‘ = ‘ P, Pb‘
* Recall: Right-associative multiplication yields polynomial error growth.

» Equality test: Equals([a],b): take bth entry from first column of .

> Bottom line: O(A*) homomorphic operations to bootstrap.

Embedding (Z,, +) into Smaller Symmetric Groups

» Let ¢ =pi1---pr = O(A) for distinct prime p;.
* Prime Number Theorem allows p;,t = O(log A).

/10

Embedding (Z,, +) into Smaller Symmetric Groups

» Let ¢ =pi1---pr = O(A) for distinct prime p;.
* Prime Number Theorem allows p;,t = O(log A).
Chinese Remainder Theorem: Z; = Z,,, X -+ X Zp,

10

Embedding (Z,, +) into Smaller Symmetric Groups

» Let ¢ =pi1---pr = O(A) for distinct prime p;.
* Prime Number Theorem allows p;,t = O(log A).
Chinese Remainder Theorem: Z; = Z,,, X -+ X Zp,

> New embedding:

Lig — Spy X =+ X Sp,

T = (meodpla-"ypxmodpt)

10

Embedding (Z,, +) into Smaller Symmetric Groups

» Let ¢ =pi1---pr = O(A) for distinct prime p;.
* Prime Number Theorem allows p;,t = O(log A).
Chinese Remainder Theorem: Z; = Z,,, X -+ X Zp,
> New embedding:
Lig — Spy X =+ X Sp,
= (Pymodprs- -+ » Prmod pr)

P> Addition: same as in warmup, but component-wise

10

Embedding (Z,, +) into Smaller Symmetric Groups
> Let g =p;---p; = O(N) for distinct prime p;.
* Prime Number Theorem allows p;,t = O(log A).
Chinese Remainder Theorem: Z; = Z,,, X -+ X Zp,

> New embedding:

Lig — Spy X =+ X Sp,

T+ (meodpla-"ypxmodpt)
P> Addition: same as in warmup, but component-wise

» Equality test:
Equals,([a] E‘Equals m b mod p;)

10

Embedding (Z,, +) into Smaller Symmetric Groups
> Let g =p;---p; = O(N) for distinct prime p;.
* Prime Number Theorem allows p;,t = O(log A).
Chinese Remainder Theorem: Z; = Z,,, X -+ X Zp,

> New embedding:

Lig — Spy X =+ X Sp,

T = (meodpla-"ypxmodpt)
P> Addition: same as in warmup, but component-wise
» Equality test:

Equals,([a] E‘Equals m b mod p;)

> Bottom line: O()\) homomorphic operations to bootstrap.

10

Open Problems

» Can we bootstrap in sublinear homom ops with polynomial error?
* Barrier in [GSW'13]: single-bit encryption (no “packing”)

10/10

Open Problems

» Can we bootstrap in sublinear homom ops with polynomial error?
* Barrier in [GSW'13]: single-bit encryption (no “packing”)

» Circular security for unbounded FHE?
* Does our representation help or hurt security?

10/10

Open Problems

» Can we bootstrap in sublinear homom ops with polynomial error?
* Barrier in [GSW'13]: single-bit encryption (no “packing”)

» Circular security for unbounded FHE?
* Does our representation help or hurt security?

Thanks!

10/10

