Limits on the Hardness of Lattice Problems in ℓ_p Norms

Chris Peikert

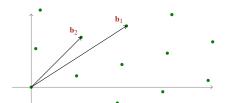
SRI International

Complexity 2007

Let $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\} \subset \mathbb{R}^n$ be linearly independent.

The *n*-dim lattice \mathcal{L} having basis **B** is:

$$\mathcal{L} = \sum_{i=1}^{n} (\mathbb{Z} \cdot \mathbf{b}_i)$$



Let $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\} \subset \mathbb{R}^n$ be linearly independent.

The n-dim lattice \mathcal{L} having basis **B** is:

$$\mathcal{L} = \sum_{i=1}^{n} (\mathbb{Z} \cdot \mathbf{b}_i)$$

Let $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\} \subset \mathbb{R}^n$ be linearly independent.

The n-dim lattice \mathcal{L} having basis **B** is:

$$\mathcal{L} = \sum_{i=1}^{n} (\mathbb{Z} \cdot \mathbf{b}_{i})$$

Close Vector Problem (CVP $_{\gamma}$)

Approximation factor $\gamma = \gamma(n)$, in some norm $\|\cdot\|$.

► Given basis **B** and point $\mathbf{v} \in \mathbb{R}^n$, distinguish $\operatorname{dist}(\mathbf{v}, \mathcal{L}) \leq 1$ from $\operatorname{dist}(\mathbf{v}, \mathcal{L}) > \gamma$

(otherwise, don't care.)

Let $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\} \subset \mathbb{R}^n$ be linearly independent.

The *n*-dim lattice \mathcal{L} having basis **B** is:

$$\mathcal{L} = \sum_{i=1}^{n} (\mathbb{Z} \cdot \mathbf{b}_{i})$$

Close Vector Problem (CVP_{\gamma})

Approximation factor $\gamma = \gamma(n)$, in some norm $\|\cdot\|$.

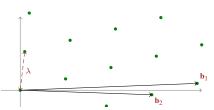
► Given basis **B** and point $\mathbf{v} \in \mathbb{R}^n$, distinguish $\operatorname{dist}(\mathbf{v}, \mathcal{L}) \leq 1$ from $\operatorname{dist}(\mathbf{v}, \mathcal{L}) > \gamma$

(otherwise, don't care.)

Let $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\} \subset \mathbb{R}^n$ be linearly independent.

The n-dim lattice \mathcal{L} having basis **B** is:

$$\mathcal{L} = \sum_{i=1}^{n} (\mathbb{Z} \cdot \mathbf{b}_i)$$



Short Vector Problem (SVP $_{\gamma}$)

Define minimum distance $\lambda = \min \|\mathbf{v}\|$ over all $0 \neq \mathbf{v} \in \mathcal{L}$.

► Given basis B, distinguish

$$\lambda < 1$$
 from $\lambda > \gamma$

(otherwise, don't care.)

Let $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\} \subset \mathbb{R}^n$ be linearly independent.

The *n*-dim lattice \mathcal{L} having basis **B** is:

$$\mathcal{L} = \sum_{i=1}^{n} (\mathbb{Z} \cdot \mathbf{b}_{i})$$

Short Vector Problem (SVP_y)

Define minimum distance $\lambda = \min \|\mathbf{v}\|$ over all $0 \neq \mathbf{v} \in \mathcal{L}$.

► Given basis B, distinguish

$$\lambda < 1$$
 from $\lambda > \gamma$

(otherwise, don't care.)

Usually use ℓ_p norm: $\|\mathbf{x}\|_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$.

Algorithms and Hardness

Algorithms for SVP $_{\gamma}$ & CVP $_{\gamma}$

- $ightharpoonup \gamma(n) \sim 2^n$ approximation in poly-time [LLL,Babai,Schnorr]
- ▶ Time/approximation tradeoffs: $\gamma(n) \sim n^c$ in time $\sim 2^{n/c}$ [AKS]

Algorithms and Hardness

Algorithms for SVP $_{\gamma}$ & CVP $_{\gamma}$

- ▶ $\gamma(n) \sim 2^n$ approximation in poly-time
- ▶ Time/approximation tradeoffs: $\gamma(n) \sim n^c$ in time $\sim 2^{n/c}$ [AKS]

NP-Hardness

(some randomized reductions...)

[LLL,Babai,Schnorr]

- In any ℓ_p norm, SVP_γ hard for any $\gamma(n) = O(1)$ [Ajt,Micc,Khot,ReRo]
- ▶ In any ℓ_p norm, CVP_γ hard for any $\gamma(n) = n^{O(1/\log\log n)}$ [DKRS,Dinur]
- ▶ Many other problems (CVPP, SIVP) hard as well . . .

Could problems be NP-hard for much larger $\gamma(n)$?

Could problems be NP-hard for much larger $\gamma(n)$?

Probably not.

Could problems be NP-hard for much larger $\gamma(n)$?

Probably not.

▶ In ℓ_2 norm, $\mathsf{CVP}_{\gamma} \in \mathsf{coAM}$ for $\gamma \sim \sqrt{n/\log n}$ [GoldreichGoldwasser]

Could problems be NP-hard for much larger $\gamma(n)$?

Probably not.

- ▶ In ℓ_2 norm, $\mathsf{CVP}_{\gamma} \in \mathsf{coAM}$ for $\gamma \sim \sqrt{n/\log n}$
- [GoldreichGoldwasser]

▶ In ℓ_2 norm, $\mathsf{CVP}_{\gamma} \in \mathsf{coNP}$ for $\gamma \sim \sqrt{n}$

[AharonovRegev]

Could problems be NP-hard for much larger $\gamma(n)$?

Probably not.

- ▶ In ℓ_2 norm, $\mathsf{CVP}_{\gamma} \in \mathsf{coAM}$ for $\gamma \sim \sqrt{n/\log n}$
- [GoldreichGoldwasser]

▶ In ℓ_2 norm, $\mathsf{CVP}_{\gamma} \in \mathsf{coNP}$ for $\gamma \sim \sqrt{n}$

[AharonovRegev]

ightharpoonup CVP $_{\gamma}$ is as hard as many other lattice problems

[GMSS,GMR]

Could problems be NP-hard for much larger $\gamma(n)$? Probably not.

- ▶ In ℓ_2 norm, $\mathsf{CVP}_{\gamma} \in \mathsf{coAM}$ for $\gamma \sim \sqrt{n/\log n}$
- [GoldreichGoldwasser]

▶ In ℓ_2 norm, $\mathsf{CVP}_{\gamma} \in \mathsf{coNP}$ for $\gamma \sim \sqrt{n}$

- [AharonovRegev]
- ightharpoonup CVP $_{\gamma}$ is as hard as many other lattice problems

[GMSS,GMR]

Neat. What else?

- ▶ In ℓ_2 norm, SVP $_{\gamma} \leq$ avg-problems for $\gamma \sim n$
- $[Ajtai, \dots, MR, Regev]$

For lattice problems, ℓ_2 norm is easiest

[RegevRosen]

Much, much more...

[LLM,PR]

Could problems be NP-hard for much larger $\gamma(n)$? Probably not.

- ▶ In ℓ_2 norm, $\mathsf{CVP}_{\gamma} \in \mathsf{coAM}$ for $\gamma \sim \sqrt{n/\log n}$
- [GoldreichGoldwasser]

▶ In ℓ_2 norm, CVP $_{\gamma} \in \text{coNP for } \gamma \sim \sqrt{n}$

- [AharonovRegev]
- ightharpoonup CVP $_{\gamma}$ is as hard as many other lattice problems

[GMSS,GMR]

Neat. What else?

▶ In ℓ_2 norm, SVP $_{\gamma}$ ≤ avg-problems for $\gamma \sim n$

[Ajtai,...,MR,Regev]

For lattice problems, ℓ_2 norm is easiest

[RegevRosen]

Much, much more...

[LLM,PR]

Could problems be NP-hard for much larger $\gamma(n)$? Probably not.

- ▶ In ℓ_2 norm, $\mathsf{CVP}_{\gamma} \in \mathsf{coAM}$ for $\gamma \sim \sqrt{n/\log n}$
- [GoldreichGoldwasser]

▶ In ℓ_2 norm, CVP $_{\gamma} \in \text{coNP for } \gamma \sim \sqrt{n}$

- [AharonovRegev]
- ightharpoonup CVP $_{\gamma}$ is as hard as many other lattice problems

[GMSS,GMR]

Neat. What else?

- ▶ In ℓ_2 norm, SVP $_{\gamma}$ ≤ avg-problems for $\gamma \sim n$
- $[Ajtai, \dots, MR, Regev] \\$

For lattice problems, ℓ_2 norm is easiest

[RegevRosen]

Much, much more...

[LLM,PR]

(Can generalize to ℓ_p norms, but lose up to \sqrt{n} factors.)

Extend positive results to ℓ_p **norms,** $p \geq 2$, **for same factors** $\gamma(n)$.

▶ Extend positive results to ℓ_p norms, $p \ge 2$, for same factors $\gamma(n)$.

- ▶ In ℓ_p norm, CVP $_{\gamma} \in \mathsf{coNP}$ for $\gamma = c_p \cdot \sqrt{n}$
- ▶ In ℓ_p norm, SVP $_\gamma \leq$ avg-problems for $\gamma \sim c_p \cdot n$
- Generalize to norms defined by arbitrary convex bodies

▶ Extend positive results to ℓ_p norms, $p \ge 2$, for same factors $\gamma(n)$.

- ▶ In ℓ_p norm, $\mathsf{CVP}_{\gamma} \in \mathsf{coNP}$ for $\gamma = c_p \cdot \sqrt{n}$
- ▶ In ℓ_p norm, SVP $_{\gamma}$ ≤ avg-problems for $\gamma \sim c_p \cdot n$
- Generalize to norms defined by arbitrary convex bodies

▶ Extend positive results to ℓ_p norms, $p \ge 2$, for same factors $\gamma(n)$.

- ▶ In ℓ_p norm, $\mathsf{CVP}_{\gamma} \in \mathsf{coNP}$ for $\gamma = c_p \cdot \sqrt{n}$
- ▶ In ℓ_p norm, SVP $_{\gamma}$ ≤ avg-problems for $\gamma \sim c_p \cdot n$
- Generalize to norms defined by arbitrary convex bodies

▶ Extend positive results to ℓ_p norms, $p \ge 2$, for same factors $\gamma(n)$.

- ▶ In ℓ_p norm, $\mathsf{CVP}_{\gamma} \in \mathsf{coNP}$ for $\gamma = c_p \cdot \sqrt{n}$
- ▶ In ℓ_p norm, SVP $_{\gamma}$ ≤ avg-problems for $\gamma \sim c_p \cdot n$
- Generalize to norms defined by arbitrary convex bodies

▶ Extend positive results to ℓ_p norms, $p \ge 2$, for same factors $\gamma(n)$.

New Limits on Hardness

- ▶ In ℓ_p norm, $\mathsf{CVP}_{\gamma} \in \mathsf{coNP}$ for $\gamma = c_p \cdot \sqrt{n}$
- ▶ In ℓ_p norm, SVP $_{\gamma}$ ≤ avg-problems for $\gamma \sim c_p \cdot n$
- Generalize to norms defined by arbitrary convex bodies

Techniques

- ► New analysis of prior algorithms [AharRegev,MiccRegev,Regev,...]
- General analysis of discrete Gaussians over lattices
- Introduce ideas from [Ban95] to complexity

▶ Extend positive results to ℓ_p norms, $p \ge 2$, for same factors $\gamma(n)$.

New Limits on Hardness

- ▶ In ℓ_p norm, $\mathsf{CVP}_{\gamma} \in \mathsf{coNP}$ for $\gamma = c_p \cdot \sqrt{n}$
- ▶ In ℓ_p norm, SVP $_{\gamma}$ ≤ avg-problems for $\gamma \sim c_p \cdot n$
- Generalize to norms defined by arbitrary convex bodies

Techniques

- ► New analysis of prior algorithms [AharRegev,MiccRegev,Regev,...]
 - General analysis of discrete Gaussians over lattices
 - Introduce ideas from [Ban95] to complexity

A Bit Odd

► Can't show anything new for $1 \le p < 2...$

1 Partial converse of [RegevRosen] (" ℓ_2 is easiest").

- 1 Partial converse of [RegevRosen] (" ℓ_2 is easiest").
- Weakens assumptions for lattice-based cryptography.

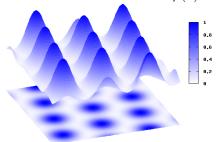
- 1 Partial converse of [RegevRosen] (" ℓ_2 is easiest").
- 2 Weakens assumptions for lattice-based cryptography.
- 3 What's going on with p < 2? (Beating $n^{1/p}$ for even a single p has implications for codes.)

- 1 Partial converse of [RegevRosen] (" ℓ_2 is easiest").
- 2 Weakens assumptions for lattice-based cryptography.
- 3 What's going on with p < 2?

 (Beating $n^{1/p}$ for even a single p has implications for codes.)
- **4** Are all ℓ_p norms ($p \ge 2$) equivalent?

Define Gaussian function $\rho(\mathbf{x}) = \exp(-\pi \|\mathbf{x}\|_2^2)$ over \mathbb{R}^n .

Define Gaussian function $\rho(\mathbf{x}) = \exp(-\pi \|\mathbf{x}\|_2^2)$ over \mathbb{R}^n .

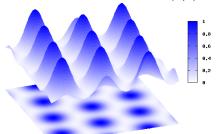


Define

$$f(\mathbf{x}) = \frac{\sum_{\mathbf{v} \in \mathcal{L}} \rho(\mathbf{x} - \mathbf{v})}{\sum_{\mathbf{v} \in \mathcal{L}} \rho(\mathbf{v})}$$

$$= \frac{\rho(\mathcal{L} - \mathbf{x})}{\rho(\mathcal{L})}.$$

Define Gaussian function $\rho(\mathbf{x}) = \exp(-\pi \|\mathbf{x}\|_2^2)$ over \mathbb{R}^n .



Define

$$f(\mathbf{x}) = \frac{\sum_{\mathbf{v} \in \mathcal{L}} \rho(\mathbf{x} - \mathbf{v})}{\sum_{\mathbf{v} \in \mathcal{L}} \rho(\mathbf{v})}$$
$$= \frac{\rho(\mathcal{L} - \mathbf{x})}{\rho(\mathcal{L})}.$$

Properties of f

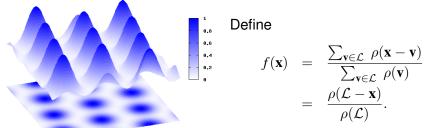
▶ If $dist_2(\mathbf{x}, \mathcal{L}) \leq \frac{1}{10}$, then $f(\mathbf{x}) \geq \frac{1}{2}$.

(Easy.)

▶ If $dist_2(\mathbf{x}, \mathcal{L}) > \sqrt{n}$, then $f(\mathbf{x}) < 2^{-n}$.

(Really hard. [Ban93])

Define Gaussian function $\rho(\mathbf{x}) = \exp(-\pi \|\mathbf{x}\|_2^2)$ over \mathbb{R}^n .



Properties of f

▶ If $dist_2(\mathbf{x}, \mathcal{L}) \leq \frac{1}{10}$, then $f(\mathbf{x}) \geq \frac{1}{2}$.

(Easy.)

▶ If $dist_2(\mathbf{x}, \mathcal{L}) > \sqrt{n}$, then $f(\mathbf{x}) < 2^{-n}$.

(Really hard. [Ban93])

Enter Aharonov & Regev...

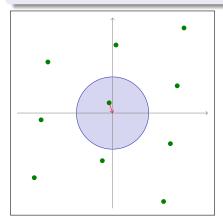
▶ A compact & verifiable representation of $f \Rightarrow \text{CVP}_{10\sqrt{n}} \in \text{coNP}$.

Lemma [Ban93]

$$\frac{\rho((\mathcal{L} - \mathbf{x}) \setminus \sqrt{n} \cdot \mathcal{B}_2)}{\rho(\mathcal{L})} < 2^{-n}.$$

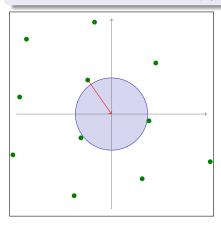
Lemma [Ban93]

$$\frac{\rho((\mathcal{L} - \mathbf{x}) \setminus \sqrt{n} \cdot \mathcal{B}_2)}{\rho(\mathcal{L})} < 2^{-n}.$$



Lemma [Ban93]

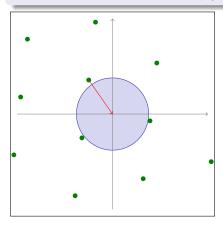
$$\frac{\rho((\mathcal{L} - \mathbf{x}) \setminus \sqrt{n} \cdot \mathcal{B}_2)}{\rho(\mathcal{L})} < 2^{-n}.$$



- Say $\operatorname{dist}_2(\mathbf{x}, \mathcal{L}) > \sqrt{n}$.
- ► Then $\rho(\mathcal{L} \mathbf{x}) = \rho((\mathcal{L} \mathbf{x}) \setminus \sqrt{n} \cdot \mathcal{B}_2).$
- ► Therefore $f(\mathbf{x}) = \frac{\rho(\mathcal{L} \mathbf{x})}{\rho(\mathcal{L})} < 2^{-n}$.

Lemma [Ban93]

$$\frac{\rho((\mathcal{L} - \mathbf{x}) \setminus \sqrt{n} \cdot \mathcal{B}_2)}{\rho(\mathcal{L})} < 2^{-n}.$$



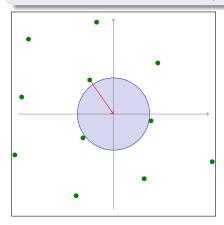
- ▶ Say dist₂(\mathbf{x}, \mathcal{L}) > \sqrt{n} .
- ► Then $\rho(\mathcal{L} \mathbf{x}) = \rho((\mathcal{L} \mathbf{x}) \setminus \sqrt{n} \cdot \mathcal{B}_2).$
- ► Therefore $f(\mathbf{x}) = \frac{\rho(\mathcal{L} \mathbf{x})}{\rho(\mathcal{L})} < 2^{-n}$.

Measure Inequalities (for ℓ_2)

Lemma [Ban93]

For any lattice \mathcal{L} and $\mathbf{x} \in \mathbb{R}^n$,

$$\frac{\rho((\mathcal{L} - \mathbf{x}) \setminus \sqrt{n} \cdot \mathcal{B}_2)}{\rho(\mathcal{L})} < 2^{-n}.$$



- Say $\operatorname{dist}_2(\mathbf{x},\mathcal{L}) > \sqrt{n}$.
- ► Then $\rho(\mathcal{L} \mathbf{x}) = \rho((\mathcal{L} \mathbf{x}) \setminus \sqrt{n} \cdot \mathcal{B}_2).$
- ► Therefore $f(\mathbf{x}) = \frac{\rho(\mathcal{L} \mathbf{x})}{\rho(\mathcal{L})} < 2^{-n}$.

Lemma [Ban95]

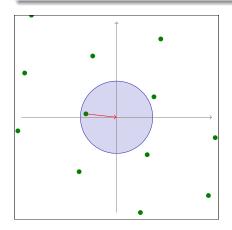
For any $p \in [1, \infty)$, there exists a constant c_p :

$$\frac{\rho((\mathcal{L} - \mathbf{x}) \backslash c_p \cdot n^{1/p} \cdot \mathcal{B}_p)}{\rho(\mathcal{L})} < \frac{1}{4}.$$

Lemma [Ban95]

For any $p \in [1, \infty)$, there exists a constant c_p :

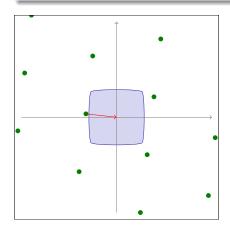
$$\frac{\rho((\mathcal{L} - \mathbf{x}) \backslash c_p \cdot n^{1/p} \cdot \mathcal{B}_p)}{\rho(\mathcal{L})} < \frac{1}{4}.$$



Lemma [Ban95]

For any $p \in [1, \infty)$, there exists a constant c_p :

$$\frac{\rho((\mathcal{L} - \mathbf{x}) \setminus c_p \cdot n^{1/p} \cdot \mathcal{B}_p)}{\rho(\mathcal{L})} < \frac{1}{4}.$$

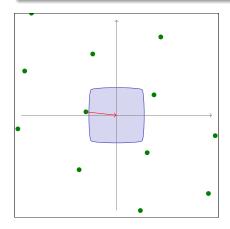


- If $d \leq \frac{n^{1/p-1/2}}{10}$, then $\operatorname{dist}_2(\mathbf{x}, \mathcal{L}) \leq \frac{1}{10}$, and $f(\mathbf{x}) \geq 1/2$.
- Therefore in ℓ_p norm, $\text{CVP}_{10c_n\sqrt{n}} \in \text{coNP}$.

Lemma [Ban95]

For any $p \in [1, \infty)$, there exists a constant c_p :

$$\frac{\rho((\mathcal{L} - \mathbf{x}) \setminus c_p \cdot n^{1/p} \cdot \mathcal{B}_p)}{\rho(\mathcal{L})} < \frac{1}{4}.$$

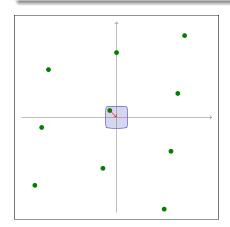


- ▶ If $d > c_p \cdot n^{1/p}$, then $f(\mathbf{x}) < 1/4$.
- If $d \leq \frac{n^{1/p-1/2}}{10}$, then $\operatorname{dist}_2(\mathbf{x}, \mathcal{L}) \leq \frac{1}{10}$, and $f(\mathbf{x}) \geq 1/2$.
- Therefore in ℓ_p norm, $\text{CVP}_{10c_n\sqrt{n}} \in \text{coNP}$.

Lemma [Ban95]

For any $p \in [1, \infty)$, there exists a constant c_p :

$$\frac{\rho((\mathcal{L} - \mathbf{x}) \setminus c_p \cdot n^{1/p} \cdot \mathcal{B}_p)}{\rho(\mathcal{L})} < \frac{1}{4}.$$

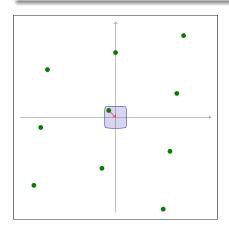


- $\qquad \qquad \textbf{If } d > c_p \cdot n^{1/p} \text{, then } f(\mathbf{x}) < 1/4.$
- If $d \leq \frac{n^{1/p-1/2}}{10}$, then $\operatorname{dist}_2(\mathbf{x}, \mathcal{L}) \leq \frac{1}{10}$, and $f(\mathbf{x}) \geq 1/2$.
- Therefore in ℓ_p norm, $\text{CVP}_{10c_p\sqrt{n}} \in \text{coNP}$.

Lemma [Ban95]

For any $p \in [1, \infty)$, there exists a constant c_p :

$$\frac{\rho((\mathcal{L} - \mathbf{x}) \setminus c_p \cdot n^{1/p} \cdot \mathcal{B}_p)}{\rho(\mathcal{L})} < \frac{1}{4}.$$

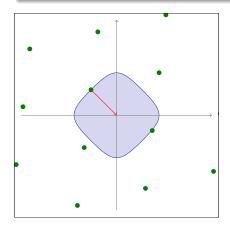


- $\qquad \qquad \textbf{If } d > c_p \cdot n^{1/p} \text{, then } f(\mathbf{x}) < 1/4.$
- If $d \leq \frac{n^{1/p-1/2}}{10}$, then $\operatorname{dist}_2(\mathbf{x}, \mathcal{L}) \leq \frac{1}{10}$, and $f(\mathbf{x}) \geq 1/2$.
- ► Therefore in ℓ_p norm, $\mathsf{CVP}_{10c_n\sqrt{n}} \in \mathsf{coNP}$.

Lemma [Ban95]

For any $p \in [1, \infty)$, there exists a constant c_p :

$$\frac{\rho((\mathcal{L} - \mathbf{x}) \setminus \mathbf{c}_p \cdot \mathbf{n}^{1/p} \cdot \mathcal{B}_p)}{\rho(\mathcal{L})} < \frac{1}{4}.$$

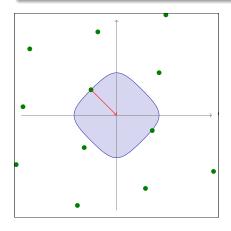


- ▶ If $d > c_p \cdot n^{1/p}$, then $f(\mathbf{x}) < 1/4$.
- ► To guarantee $\operatorname{dist}_2(\mathbf{x}, \mathcal{L}) \leq \frac{1}{10}$, we need $d \leq \frac{1}{10}$.
- ▶ Only a $\sim n^{1/p}$ gap.

Lemma [Ban95]

For any $p \in [1, \infty)$, there exists a constant c_p :

$$\frac{\rho((\mathcal{L} - \mathbf{x}) \setminus \mathbf{c}_p \cdot \mathbf{n}^{1/p} \cdot \mathcal{B}_p)}{\rho(\mathcal{L})} < \frac{1}{4}.$$

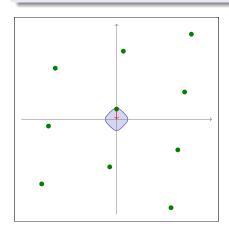


- ▶ If $d > c_p \cdot n^{1/p}$, then $f(\mathbf{x}) < 1/4$.
- ► To guarantee $\operatorname{dist}_2(\mathbf{x}, \mathcal{L}) \leq \frac{1}{10}$, we need $d \leq \frac{1}{10}$.
- Only a $\sim n^{1/p}$ gap.

Lemma [Ban95]

For any $p \in [1, \infty)$, there exists a constant c_p :

$$\frac{\rho((\mathcal{L} - \mathbf{x}) \setminus \mathbf{c}_p \cdot \mathbf{n}^{1/p} \cdot \mathcal{B}_p)}{\rho(\mathcal{L})} < \frac{1}{4}.$$

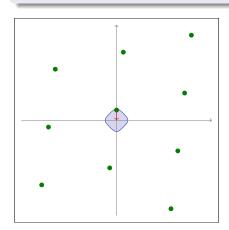


- $\qquad \qquad \textbf{If } d > c_p \cdot n^{1/p} \text{, then } f(\mathbf{x}) < 1/4.$
- ► To guarantee $\operatorname{dist}_2(\mathbf{x}, \mathcal{L}) \leq \frac{1}{10}$, we need $d \leq \frac{1}{10}$.
- ▶ Only a $\sim n^{1/p}$ gap.

Lemma [Ban95]

For any $p \in [1, \infty)$, there exists a constant c_p :

$$\frac{\rho((\mathcal{L} - \mathbf{x}) \setminus \mathbf{c}_p \cdot \mathbf{n}^{1/p} \cdot \mathcal{B}_p)}{\rho(\mathcal{L})} < \frac{1}{4}.$$



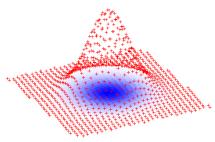
- $\qquad \qquad \textbf{If } d > c_p \cdot n^{1/p} \text{, then } f(\mathbf{x}) < 1/4.$
- ► To guarantee $\operatorname{dist}_2(\mathbf{x}, \mathcal{L}) \leq \frac{1}{10}$, we need $d \leq \frac{1}{10}$.
- ▶ Only a $\sim n^{1/p}$ gap.

Define probability distribution $D_{\mathcal{L}}$ over lattice \mathcal{L} :

For
$$\mathbf{x} \in \mathcal{L}$$
, $D_{\mathcal{L}}(\mathbf{x}) \sim \rho(\mathbf{x}) = \exp(-\pi \|\mathbf{x}\|_2^2)$.

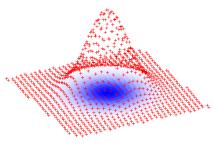
Define probability distribution $D_{\mathcal{L}}$ over lattice \mathcal{L} :

For
$$\mathbf{x} \in \mathcal{L}$$
, $D_{\mathcal{L}}(\mathbf{x}) \sim \rho(\mathbf{x}) = \exp(-\pi \|\mathbf{x}\|_2^2)$.



Define probability distribution $D_{\mathcal{L}}$ over lattice \mathcal{L} :

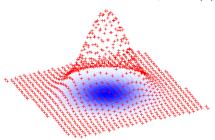
For
$$\mathbf{x} \in \mathcal{L}$$
, $D_{\mathcal{L}}(\mathbf{x}) \sim \rho(\mathbf{x}) = \exp(-\pi \|\mathbf{x}\|_2^2)$.



- Central role in worst-to-average reductions [MicciancioRegev,Regev]
- Reductions output (sums of) samples from D_L

Define probability distribution $D_{\mathcal{L}}$ over lattice \mathcal{L} :

For
$$\mathbf{x} \in \mathcal{L}$$
, $D_{\mathcal{L}}(\mathbf{x}) \sim \rho(\mathbf{x}) = \exp(-\pi \|\mathbf{x}\|_2^2)$.



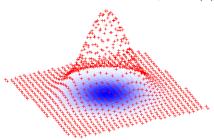
- Central role in worst-to-average reductions [MicciancioRegev,Regev]
- Reductions output (sums of) samples from D_L

Main Question

Q: How do samples from $D_{\mathcal{L}}$ behave in ℓ_p norm?

Define probability distribution $D_{\mathcal{L}}$ over lattice \mathcal{L} :

For
$$\mathbf{x} \in \mathcal{L}$$
, $D_{\mathcal{L}}(\mathbf{x}) \sim \rho(\mathbf{x}) = \exp(-\pi \|\mathbf{x}\|_2^2)$.



- Central role in worst-to-average reductions [MicciancioRegev,Regev]
- Reductions output (sums of) samples from D_L

Main Question

Q: How do samples from $D_{\mathcal{L}}$ behave in ℓ_p norm?

A: Just like those from a continuous Gaussian!

$$\underset{\mathbf{x} \sim D_{\mathcal{L}}}{\mathbb{E}} \left[\|\mathbf{x}\|_{p} \right] \approx \sqrt{p} \cdot n^{1/p}$$

Proof Highlights

Exponential Tail Inequality

For any $r \geq 0$,

$$\Pr_{\mathbf{x} \sim D_{\mathcal{L}}}[|x_i| > r] \quad \leq \quad \exp(-\pi r^2).$$

Proof Highlights

Exponential Tail Inequality

For any $r \geq 0$,

$$\Pr_{\mathbf{x} \sim D_{\mathcal{L}}}[|x_i| > r] \leq \exp(-\pi r^2).$$

Moments

$$\frac{\mathbf{E}}{\mathbf{x} \sim D_{\mathcal{L}}} [|x_i|^p] = \sum_{\mathbf{x} \in \mathcal{L}} |x_i|^p \Pr[\mathbf{x}] = \sum_{\mathbf{x} \in \mathcal{L}} p \int_{r=0}^{|x_i|} r^{p-1} dr \Pr[\mathbf{x}]$$

$$= p \int_{r=0}^{\infty} r^{p-1} \Pr[|x_i| > r] dr \le (\sqrt{p})^p.$$

Proof Highlights

Exponential Tail Inequality

For any $r \ge 0$,

$$\Pr_{\mathbf{x} \sim D_{\mathcal{L}}}[|x_i| > r] \leq \exp(-\pi r^2).$$

Moments

$$\underset{\mathbf{x} \sim D_{\mathcal{L}}}{\mathbb{E}} [|x_i|^p] = \sum_{\mathbf{x} \in \mathcal{L}} |x_i|^p \Pr[\mathbf{x}] = \sum_{\mathbf{x} \in \mathcal{L}} p \int_{r=0}^{|x_i|} r^{p-1} dr \Pr[\mathbf{x}]$$

$$= p \int_{r=0}^{\infty} r^{p-1} \Pr_{\mathbf{x}}[|x_i| > r] dr \le (\sqrt{p})^p.$$

Jensen & Linearity

$$\mathbb{E}_{\mathbf{x} \sim D_c} \left[\|\mathbf{x}\|_p \right] \leq \left(\mathbb{E} \left[\|\mathbf{x}\|_p^p \right] \right)^{1/p} = \left(n \cdot \mathbb{E}[|x_i|^p] \right)^{1/p} \leq \sqrt{p} \cdot n^{1/p}.$$

Conclusions

1 Gaussian techniques are even more powerful than we thought.

Conclusions

- 1 Gaussian techniques are even more powerful than we thought.
- **2** ℓ_p norms for $p \geq 2$ look surprisingly similar.

Conclusions

- 1 Gaussian techniques are even more powerful than we thought.
- **2** ℓ_p norms for $p \geq 2$ look surprisingly similar.
- **3** We should pay more attention to the ℓ_1 norm.