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Lattices and Their Problems

Let B = {b;,...,b,} C R" be linearly independent.
The n-dim lattice £ having basis B is:

L = Zn:(z'bi)
=1

Short Vector Problem (SVP,)

Define minimum distance A = min ||v|| over all 0 # v € L.

» Given basis B, distinguish
A<1 from A>~ (otherwise, don’t care.)

Usually use ¢, norm: [x[, = (X0 bal)'/”.
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Algorithms and Hardness

Algorithms for SVP,, & CVP,

> ~(n) ~ 2" approximation in poly-time [LLL,Babai,Schnorr]

» Time/approximation tradeoffs: v(n) ~ n¢ in time ~ 2/¢ [AKS]
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Algorithms and Hardness

Algorithms for SVP, & CVP,

> ~(n) ~ 2" approximation in poly-time [LLL,Babai,Schnorr]

» Time/approximation tradeoffs: v(n) ~ n¢ in time ~ 2/¢ [AKS]

NP-Hardness (some randomized reductions...)
» In any ¢, norm, SVP, hard for any v(n) = O(1)  [Ajt,Micc,Khot,ReRo]

> In any ¢, norm, CVP, hard for any ~(n) = n®{1/1ogloen) " |pKRs,Dinur]

» Many other problems (CVPP, SIVP) hard as well ...
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‘Positive’ Results (Limits on Hardness)
Could problems be NP-hard for much larger v(n)? J
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» CVP, is as hard as many other lattice problems [GMSS,GMR]

Neat. What else?

» In ¢, norm, SVP, < avg-problems for v ~ n [Ajtai,. .. ,MR,Regev]
> For lattice problems, ¢, norm is easiest [RegevRosen]
» Much, much more... [LLM,PR]

(Can generalize to ¢, norms, but lose up to /n factors.)
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» Extend positive results to ¢, norms, p > 2, for same factors ~(n).
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Our Results
» Extend positive results to ¢, norms, p > 2, for same factors ~(n).

New Limits on Hardness
» In ¢, norm, CVP,, € coNP fory = ¢, - \/n

» In ¢, norm, SVP, < avg-problems for v ~ ¢, - n

» Generalize to norms defined by arbitrary convex bodies

| A\

Techniques
> New analysis of prior algorithms [AharRegev,MiccRegev,Regey,. . . ]

» General analysis of discrete Gaussians over lattices

» Introduce ideas from [Ban95] to complexity

A Bit Odd
» Can'’t show anything new for 1 <p < 2...
5/12




Interpretation and Open Problems

@ Partial converse of [RegevRosen] (“/, is easiest”).

6/12



Interpretation and Open Problems

© Partial converse of [RegevRosen] (“/, is easiest”).

@ Weakens assumptions for lattice-based cryptography.

6/12



Interpretation and Open Problems

© Partial converse of [RegevRosen] (“/; is easiest”).
@® Weakens assumptions for lattice-based cryptography.

© What's going on with p < 2?

(Beating n'/? for even a single p has implications for codes.)

6/12



Interpretation and Open Problems

© Partial converse of [RegevRosen] (“/; is easiest”).
@® Weakens assumptions for lattice-based cryptography.

©® What's going on with p < 2?

(Beating n'/? for even a single p has implications for codes.)

O Are all ¢, norms (p > 2) equivalent?
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Gauss meets Lattices
Define Gaussian function p(x) = exp(— |x||3) over R".
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Define Gaussian function p(x) = exp(— |x||3) over R".

Define
X o Zvelj p(X—V)
f( ) B Zveﬁ ,O(V)
_ pL—Xx)
p(L)

Properties of f

> If distp(x, £) < 1—10, then f(x) > % (Easy.)

> If dista(x, £) > /n, then f(x) < 27", (Really hard. [Ban93])
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Gauss meets Lattices
Define Gaussian function p(x) = exp(— |x||3) over R".

Define
X o Zveﬁ IO(X_V)
U SR
_ pL—Xx)
p(L)

Properties of f
> If distx(x, £) < 15, then f(x) > % (Easy.)
> If dista(x, £) > /n, then f(x) < 27", (Really hard. [Ban93])

Enter Aharonov & Regev...
> A compact & verifiable representation of f =~ CVP,, ; € coNP.
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Measure Inequalities (for /,)

Lemma [Ban93]

For any lattice £ and x € R”,

o(L—X\Vi-By) .,
o(L) <2
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Measure Inequalities (for /,)

Lemma [Ban93]

For any lattice £ and x € R”,

o(L—X\Vi-By) .,
o(L) <2

. > Say disty(x, L) > /n.

» Then

x\) | p(L£ = x) = p((L = x)\v/n - Ba).

o » Therefore f(x) = p;‘(:g)") <27
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Generalizing to /, Norms
Lemma [Ban95]

For any p € [1, c0), there exists a constant c,:
p((£ =x)\¢, -n'/7 - By) 1
p(L) 4
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Lemma [Ban95]
For any p € [1, c0), there exists a constant c,:

PU(L=x)\cp-n'"-By) 1

p(L) i

. Say p > 2. Let d = dist,(x, £).
> Ifd > c,-n'/?, then f(x) < 1/4.
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Lemma [Ban95]
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Generalizing to /, Norms

Lemma [Ban95]
For any p € [1, c0), there exists a constant c,:

PU(L=x)\cp-n'"-By) 1

p(L) 4
° Now say p < 2. Let d = dist,(x, L).
: > Ifd > c, n'/?, then f(x) < 1/4.
any ~ > To guarantee dist(x, £) < 1,
* we need d < .
. ‘ > Only a ~ n'/? gap.
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Discrete Gaussians
Define probability distribution D, over lattice L:

Forx € £, Dg(x) ~ p(x) = exp(— [|x[3)-
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Define probability distribution D, over lattice L:

Discrete Gaussians

2.

exp(— [|x]|

De(x) ~ p(x)

Forx € L,

£
o
o
P
©
=
c
©
o
A

worst-to-average reductions
[MicciancioRegev,Regev]

» Reductions output (sums of)
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Discrete Gaussians
Define probability distribution D, over lattice L:

Forx € £, Dg(x) ~ p(x) = exp(— [|x[3)-

» Central role in
worst-to-average reductions
[MicciancioRegev,Regev]

» Reductions output (sums of)
samples from D,

Main Question

Q: How do samples from D, behave in ¢, norm?
A: Just like those from a continuous Gaussian!

E_|Ixl,] ~ v5-n'

x~D
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Proof Highlights

Exponential Tail Inequality

For any r > 0,

P

b [x:| >r] < exp(—ﬂrz).

11/12



Proof Highlights

Exponential Tail Inequality

For any r > 0,
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Proof Highlights

Exponential Tail Inequality

For any r > 0,
r [ >r] < exp(—ﬂrz).

x~Dp
[|x, Z x| Pr[x Zp r”*l dr Pr[x]

xeL xeL Jr=0

:”[o””%WA>mWSW@H

Jensen & Linearity

g [i,] < (B[] = (v ElP)'” < ypon't

x~Dp
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Conclusions

© Gaussian techniques are even more powerful than we thought.
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Conclusions

© Gaussian techniques are even more powerful than we thought.
® ¢, norms for p > 2 look surprisingly similar.

©® We should pay more attention to the £; norm.
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