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One-Wayness vs. Collision-Resistance

One-Way Function (family):

a, y = fa(x)
hard−→ x′ ∈ f−1

a (y)

4 Sufficient for some crypto

7 But applications use OWFs inefficiently. . .
This is inherent (black-box)! [GeTr, GGK, HoKa]

7 Can’t realize some notions at all! (black-box)
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One-Wayness vs. Collision-Resistance

Collision-Resistant Hash (family):

a hard−→ x, x′ : fa(x) = fa(x′)

4 Can construct more applications

4 Applications use hashing efficiently!
?? BUT: is the hash itself efficient?
+ MD5, SHA-1 highlight need for sound & efficient hashes
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Our Contributions

Hash Function
4 Very efficient: evaluate with just a few FFTs
4 Collision-resistant: worst-case assumption on cyclic lattices
4 Tighter & simpler security reduction than related works

Understanding
4 New algebraic interpretation of cyclic lattices
4 New and tight connections among problems on cyclic lattices

+ Our function is a certain kind of knapsack. . .
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Generalized Knapsack Function [Mic02]

Let R be a ring with + and ×, and let S ⊆ R. For:
• A = (a1, . . . , am) ∈ Rm — m “weights”: key
• X = (x1, . . . , xm) ∈ Sm — m “coeffs”: input

fA(X) =
m∑

i=1

ai × xi

+ Efficiency determined by m (“width”); runtime of ×, +.

Lineage of Cryptographic Knapsacks

Knapsack Function Security Notion Efficient?

[Ajt96, GGH97] collision-resistant 7

[Mic02] one-way 4

Today collision-resistant 44
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Micciancio’s Function

• R = (Zn
p,+,⊗), where ⊗ is cyclic convolution: |a

|

⊗
 |x
|

 =


a0 an−1 · · · a1
a1 a0 · · · a2
...

...
. . .

...
an−1 an−2 · · · a0

 ·


x0
x1
...

xn−1



• S = {x ∈ R : ‖x‖∞ is small}. (Note: |S| is exponential in n.)
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Evaluating f

A =

 | | |
a1 a2 · · · am

| | |

 ∈ Rm

X =

 | | |
x1 x2 · · · xm

| | |

 ∈ Sm

fA(X) =
∑

i

 |ai

|

⊗
 |xi

|


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Theorem
“decoding” in cyclic lattices hard to approx in the worst case

⇓
fA one-way on the average (for any width m = ω(1)).

Efficient: just m FFTs; small key

Open Question: Like [Ajt96], is f collision-resistant?
Today: No! (But we have a remedy. . . )
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Collisions via an Algebraic View

Ring R = Zn
p under ⊗ has algebraic structure:

x = (x0, . . . , xn−1) ∈ Zn
p � x(α) =

∑
xjα

j ∈ Zp[α]

Fact 1: Convolution is polynomial multiplication, mod αn − 1.

a⊗ x � a(α) · x(α) mod (αn − 1)

Fact 2: Modulus αn − 1 is reducible.
(αn − 1) = (α− 1)(αn−1 + · · ·+ 1)

Fact 3: (α− 1) divides uniform ai(α) in Zp[α] w/prob 1/p.

Yields a collision:

ai(α) · (αn−1 + · · ·+ 1)︸ ︷︷ ︸
xi

= ai(α) · 0︸︷︷︸
x′

i

mod(αn − 1)

Works because Zp[α]/(αn − 1) is not an integral domain.
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Our Function

Choose n prime.
• (α− 1) and (αn−1+· · ·+1) are irreducible in Z[α].
• So arithmetic mod(αn − 1) decomposes into two integral domains.

(Chinese remaindering)

Then:
+ R = (Zn

p ,+,⊗)
+ S = {x ∈ R : ‖x‖∞ small, and (α− 1) | x(α) in Z[α]}.
+ Rules out our collisions, but is it provably secure?

Theorem (Us)
shortest vec in cyclic lattices hard to approx in worst case (prime n)

⇓
fA collision-resistant on the average, for width m = O(1)!

Very efficient: even 2 FFTs suffice
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(Cyclic) Lattices

Let B = {b1, . . . ,bn} ⊂ Zn be linearly independent.
The lattice L(B) ⊂ Zn having basis B is:

L(B) =

{
d∑

i=1

cibi | ∀ i, ci ∈ Z

}
.

Lattice Λ is cyclic if x ∈ Λ⇒ rot(x) ∈ Λ.
For x = (x0, . . . , xn−1): rot(x) = (xn−1, x0, . . . , xn−2).

(0,0)
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For x = (x0, . . . , xn−1): rot(x) = (xn−1, x0, . . . , xn−2).

Cyclic lattices are closed under convolution with any v ∈ Zn:

x⊗ v =


x0 xn−1 · · · x1
x1 x0 · · · x2
...

...
. . .

...
xn−1 xn−2 · · · x0

 ·


v0
v1
...

vn−1

 ∈ Λ.
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Complexity of Shortest Vector

Shortest Vector Problem (SVP)
Given B, find v ∈ L(B), v 6= 0 s.t. ‖v‖ (approx) minimal.

(0,0)

Chris Peikert, Alon Rosen (MIT, Harvard) Efficient Collision-Resistant Hashing TCC 2006 9 / 12



Complexity of Shortest Vector

Shortest Vector Problem (SVP)
Given B, find v ∈ L(B), v 6= 0 s.t. ‖v‖ (approx) minimal.

Complexity
• In general, NP-hard to approx to any const fact [Ajt, Mic, Kho].

But no NP-hardness known for cyclic lattices.

• Best (general) algorithms yield approx factors 2Θ̃(n) [LLL, Sch].
Don’t seem to perform better on cyclic lattices.

(We can’t solve it, either!)

Our Assumption
For prime dimensions n, SVP hard to approx

to within Θ̃(n) in cyclic lattices, in the worst case.
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Our New Understanding of Cyclic Lattices

+ Linear algebra of cyclic lattices is tied to polynomial algebra.

For any polynomial Φ(α) | (αn − 1), define the linear subspace:

HΦ = {x ∈ Rn : Φ(α) divides x(α) in R[α]}

Lemma 1: HΦ is closed under rot (cyclic shift).

Lemma 2: Let n be prime, and x ∈ Λ ∩ Hα−1. Then
x, rot(x), . . . , rotn−2(x)

are linearly independent, and span Hα−1.

Lemma 3: shortest in Λ ≈ shortest in (Λ ∩ Hα−1).

Corollary: Hα−1 is “hard-core” for SVP.
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Worst-Case to Average-Case Reduction

Solve SVP in Hα−1

For any B = {b1, . . . ,bn} ⊂ Zn generating lattice Λ,
approximate shortest v ∈ Λ ∩ Hα−1.

Given
Oracle O finds collisions in our fA, but only for uniform keys A.

Reduction
Resembles [Ajt96, GGH97, CN97, M02, M’02, MR04], with improvements:

4 “Bad” oracle answers are very rare (with elementary proof).
(Integral domain.)

4 Each iteration needs to find only one vector (not n).
(Rotations are lin indep.)

⇒ Simpler, tighter security reduction.
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Conclusions

+ Cyclic lattices yield very efficient cryptographic functions.

• More algebraic structure than general lattices.
• Tightly-connected computational problems.

Open Question
What is their worst-case complexity?

thank you
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