
On Error Correction in the Exponent

Chris Peikert∗

December 8, 2005

Abstract

Given a corrupted word w = (w1, . . . , wn) from a Reed-Solomon code of distance d, there
are many ways to efficiently find and correct its errors. But what if we are instead given
(gw1 , . . . , gwn) where g generates some large cyclic group — can the errors still be corrected
efficiently? This problem is called error correction in the exponent, and though it arises naturally
in many areas of cryptography, it has received little attention.

We first show that unique decoding and list decoding in the exponent are no harder than
the computational Diffie-Hellman (CDH) problem in the same group. The remainder of our
results are negative:

• Under mild assumptions on the parameters, we show that bounded-distance decoding in
the exponent, under e = d− k1−ε errors for any ε > 0, is as hard as the discrete logarithm
problem in the same group.

• For generic algorithms (as defined by Shoup, Eurocrypt 1997) that treat the group as a
“black-box,” we show lower bounds for decoding that exactly match known algorithms.

Our generic lower bounds also extend to decisional variants of the decoding problem, and to
groups in which the decisional Diffie-Hellman (DDH) problem is easy. This suggests that hard-
ness of decoding in the exponent is a qualitatively new assumption that lies “between” the DDH
and CDH assumptions.

1 Introduction

Reed-Solomon codes and cryptography. The Reed-Solomon (RS) family of error-correcting
codes [19] has proven incredibly useful throughout several areas of theoretical computer science
and in many real-world applications. They are very simple to define: for any field Fq of size q,
any message length k and code length n such that k ≤ n ≤ q, and any evaluation set of n distinct
points E = {α1, . . . , αn} ⊆ Fq, the Reed-Solomon (RS) code RSq(E , k) is the set of all codewords
(p(α1), . . . , p(αn)), where p(x) ∈ Fq[x], deg(p) < k.

In addition to their elegant definition and many beautiful combinatorial properties, Reed-
Solomon codes also admit efficient algorithms for correcting errors. The algorithm of Berlekamp
and Welch [1] corrects up to d/2 = (n − k + 1)/2 errors in any codeword w ∈ RSq(E , k), while
the list-decoding algorithm of Guruswami and Sudan [12] (building on groundbreaking work by
Sudan [23]) can find all codewords within Hamming distance n−

√
nk of a given word.

∗MIT CSAIL, 32 Vassar St, Cambridge, MA, 02139. cpeikert@theory.csail.mit.edu

1

Reed-Solomon codes also play a fundamental role in modern cryptography, but are often known
by a different name: Shamir (or polynomial) secret-sharing [21]. McEliece and Sarwate first ob-
served [15] that sharing a secret using Shamir’s scheme is equivalent to encoding the secret under
an RS code: a random low-degree polynomial p is chosen so that p(α0) is the value of the secret,
and the shares are the evaluations of p at many other distinct points α1, . . . , αn. Moreover, recon-
structing the secret when players withhold or mis-report their shares is equivalent to decoding a
codeword that has been corrupted with erasures or errors (respectively).

Placing shares in the exponent. Many cryptographic schemes rely on the presumed hardness
of computing discrete logs in some cyclic group G of prime order q generated by an element g. In
constructing threshold versions of such schemes, distributing trust over many players often involves
distributing the secret key via polynomial secret sharing/RS encoding (where the alphabet is the
field Zq). To perform the cryptographic task, typically the players must collectively compute some
value of the form gw, where w depends on the secret key and must remain secret. For example, to
decrypt an ElGamal [10] ciphertext (c, d) = (gr,m · yr) where y = gx and x is the secret key, the
players must collectively compute the value cx = gxr without revealing their individual shares of x.

The basic protocol for computing gw usually works as follows:

1. Player i uses its share of the secret key to compute gwi , where wi = p(αi) is a share of the
secret value w = p(α0) under a polynomial p of degree less than k.

2. The players broadcast their respective values of gwi , for i = 1, . . . , n.

3. The broadcast values are (efficiently) “interpolated in the exponent”1 to recover gw.

Specifically, for any S ⊂ {1, . . . , n} such that |S| = k, given the values gwi = gp(αi) for i ∈ S,
each player locally computes

gw = gp(α0) = g
P

i∈S λS
i p(αi) =

∏
i∈S

(gwi)λS
i

using appropriate Lagrange coefficients λS
i :

λS
i =

∏
j∈S,j 6=i

αj − α0

αj − αi
mod q.

In Step 3 above, notice that any subset S of size k suffices, and that the values from players
outside S are unused in the interpolation formula. Therefore interpolation in the exponent is robust
against a “halting” adversary — i.e., one that may refuse to broadcast some shares, but always
correctly reports the values of those shares it does broadcast.

Introducing errors in the exponent. A malicious adversary, on the other hand, may lie
about its shares. This introduces errors in the exponent, instead of erasures. Without a way
to separate correct shares from incorrect shares, the interpolation formula may produce different
results depending on which shares are used.

This motivates the natural question of whether it is possible to efficiently correct errors “in
the exponent.” More specifically: if a vector x = (x1, . . . , xn) differs from some RS codeword

1Using the language of coding theory, we might call this “erasure-decoding in the exponent.”

2

w = (w1, . . . , wn) in at most e positions, then given gx = (gx1 , . . . , gxn), is it possible to efficiently
recover gw = (gw1 , . . . , gwn)?

The goal of this paper is to investigate the computational complexity of error correction in the
exponent, and to relate it to well-known computational problems in cyclic groups (such as discrete
log and Diffie-Hellman).

Relationships among parameters. Error correction in the exponent involves several differ-
ent parameters, and its complexity depends upon the relationships among these parameters. For
analyzing asymptotic behavior, all these parameters (q, n, k, e) will be seen as functions of a sin-
gle security parameter `. We will focus our attention on those parameter values which are most
common in cryptographic settings:

• Complexity of algorithms will always be measured relative to the security parameter `. An
efficient algorithm is one that runs in time polynomial in the security parameter. A function
is said to be negligible if it asymptotically decreases faster than the inverse of any fixed
polynomial in `; otherwise it is said to be non-negligible.

• The alphabet size q is exponential in `; that is, q = 2O(`).

• The codeword length n (which often corresponds to the number of players in a protocol) may
be an arbitrary polynomial in `. Therefore n is some polynomial in log q.

• The message length k (which often corresponds to the number of “curious” — i.e., semi-honest
— players) is at most n.

• The number of errors e (which often corresponds to the number of malicious players) is at
most n.

In protocols, often it is assumed that either e = 0 (corresponding to an honest-but-curious ad-
versary) or e = k − 1 (corresponding to a fully-malicious adversary). In order to understand the
problem more generally, we will consider e and k independently.

1.1 Applications

While error correction in the exponent is a very interesting problem in its own right, it is also
heavily motivated by existing work.

In the positive direction, an error correction algorithm would be highly desirable, because it
would lead to improvements in robustness (i.e., correctness in the presence of cheating players)
and efficiency of many multiparty cryptographic protocols. Currently, these protocols often require
either expensive zero-knowledge proofs of correct operation, or more efficient tools like verifiable
secret sharing. In either case, these steps cost extra rounds of communication and computation,
which could be avoided by instead having the parties perform local error correction (with the
side-effect of also identifying cheating parties).

There are many concrete cryptographic systems in the literature which would benefit from error
correction in the exponent, including (but not limited to): threshold DSS key generation and signa-
ture protocols [11], threshold ElGamal protocols [17], protocols for multiplication of shared secrets
in the exponent [18], distributed pseudorandom generators, functions, and verifiable random func-
tions [16, 9, 6], traitor-tracing schemes [2], and others. The last example of a traitor-tracing scheme

3

is interesting because, unlike the others, it is not a threshold cryptographic protocol. This indicates
that error correction in the exponent may have relevance in many other areas of cryptography as
well.

On the other hand, if in our study of this problem we discover that it appears to be hard, then
it can be used as a basis for new assumptions that may provide a foundation for new kinds of
cryptographic schemes, or improved constructions of existing primitives.

1.2 Our Results

We consider the problem of correcting errors in the exponent for the (family of) codes RSq(E , k),
defined over the field Zq for prime q.

First we observe that unique decoding and list decoding in the exponent, when the number
of errors e does not exceed the classical error bounds for those problems, is no harder than the
computational Diffie-Hellman (CDH) problem [8] in the same group. The remainder of our results
are negative:

• Under mild assumptions on the parameters, we show that bounded-distance decoding in the
exponent under e = d− k1−ε errors is as hard as the discrete logarithm problem in the same
group, for any constant ε > 0.

• For generic algorithms (as defined by Shoup [22]) that only perform “black-box” group op-
erations, we show lower bounds for decoding that exactly match known algorithms.

Our generic lower bounds also extend to decisional variants of the decoding problem, and to groups
in which the decisional Diffie-Hellman (DDH) problem is easy. This suggests that hardness of
decoding in the exponent is a qualitatively new assumption that lies “between” the DDH and CDH
assumptions.

Taken together, our positive and negative results may also hint at new connections between
other popular problems on cyclic groups (e.g., discrete log and Diffie-Hellman), which may be
illuminated by further study of error correction in the exponent.

1.3 Related Work

We are aware of only one work which directly addresses error correction in the exponent: Canetti
and Goldwasser [4] gave a simple, efficient decoding algorithm which works when e + 1 = k =
O(
√

n). (See Proposition 2.1 for a generalization.) This provides an inexpensive way to achieve
mild robustness in their threshold version of the Cramer-Shoup cryptosystem [7].

A few recent works have investigated the hardness of various “plain” (i.e., not in the exponent)
decoding tasks for Reed-Solomon codes. Cheng and Wan [5], somewhat surprisingly, showed that
(under an appropriate number of errors) certain list- and bounded-distance decoding problems are
as hard as computing discrete logs. However, their setting differs from ours in many important
ways: in their work, q is necessarily small (polynomial in n), and list-decoding is related to the
discrete log problem in the field Fqh for a somewhat large h. In contrast, we are concerned mainly
with unique decoding and bounded-distance decoding as they relate to computational problems in
groups of order q, where q is exponentially large in n.

Guruswami and Vardy [13] resolved a long-standing open problem, showing that maximum-
likelihood decoding (i.e., finding the nearest codeword) of Reed-Solomon codes is NP-hard. More

4

specifically, they showed that it is hard to distinguish whether a word is at distance n − k or
n − k − 1 from a Reed-Solomon code. Of course, the problem remains NP-hard when placed “in
the exponent.” However, their results are also incomparable to ours: they show a stronger form of
hardness, but only in the worst case, for a very large number of errors, and for a carefully-crafted
evaluation set E . In contrast, we show weaker forms of hardness, but in the average case, under
many fewer errors, and for any E .

We again stress that both of the above works [5, 13] are concerned with the hardness of plain
decoding (not in the exponent).

Notation. We denote a vector x in boldface and its value at index i by xi. For two vectors
x,y of the same length, define ∆(x,y) to be the Hamming distance between x and y, i.e. the
number of indices i for which xi 6= yi. Define wt(x) = ∆(0,x). For a code C and a vector x, define
∆(x, C) = miny∈C ∆(x,y). Denote {1, . . . , n} by [n].

2 Initial Observations and Upper Bounds

Unique decoding with a Diffie-Hellman oracle. Clearly, unique decoding in the exponent
under e < (n−k+1)/2 errors is no harder than the discrete log problem: given (gx1 , . . . , gxn), taking
discrete logs yields (x1, . . . , xn), which can be corrected using the standard algorithms [1]. However,
this approach is actually overkill: it is, in fact, enough to have an oracle for the (computational)
Diffie-Hellman problem in G. The main ingredient of the Berlekamp-Welch algorithm is simply a
linear system, which can be solved in the exponent if we have a way to perform multiplication and
inversion mod q (in the exponent). Multiplication is immediately provided by the Diffie-Hellman
oracle: on ga, gb, the oracle gives us gab. Inversion can be implemented as follows: on input ga,
compute ga−1 mod q = gaq−1 mod q by repeated squaring in the exponent. (Note that this approach
requires that q be known.)

Unique decoding by enumeration. Another approach to unique decoding (under e < (n −
k +1)/2 errors) is to merely enumerate over all subsets of size k of received shares. For each subset
K, interpolate the shares (in the exponent) to each point in E , counting the number of points in
E for which the interpolated value disagrees with the received share. It is easy to show that when
the number of disagreements is at most e, the shares in K are all correct, and the entire codeword
can be recovered from them. Unfortunately, this approach takes time

(
n
k

)
, which in general is not

polynomial in the security parameter.
A similar, but more efficient randomized approach was given in [4] for the case e + 1 = k =

O(
√

n). Here we generalize it to arbitrary e,k:

Proposition 2.1. For any e, k < n such that e < (n− k + 1)/2, there is an algorithm for unique
decoding in the exponent which performs O

(
nk(log q) ·

(
n
k

)
/
(
n−e

k

))
group operations and succeeds

with all but negligible (in n) probability. When ek = O(n log n), the algorithm performs poly(n) ·
O(log q) group operations.

Proof. The algorithm works exactly the same as the enumeration algorithm, except with an inde-
pendent, random subset K for each iteration, for some suitable number of attempts.

Correctness of the algorithm immediately follows from the distance property of RSq(E , k). We
now analyze the runtime: each iteration requires O(nk log q) group operations, using repeated

5

squaring to exponentiate each share to its appropriate Lagrange coefficient. An iteration succeeds
if and only if all k of the chosen shares are correct, and the probability of this event is:(

n−e
k

)(
n
k

) =
(n− e)!(n− k)!
(n)!(n− e− k)!

.

There are two ways to bound this quantity from below: we can write (n−e)!
n! ≥ n−e and (n−k)!

(n−e−k)! ≥
(n− e− k)e, or we can write (n−k)!

n! ≥ n−k and (n−e)!
(n−e−k)! ≥ (n− e− k)k. Taking the best of the two

options, we get a bound of:(
1− e + k

n

)min(e,k)

= exp(−O(min(e, k)(e + k)/n)) = exp(−O(ek/n)),

which is 1/poly(n). Therefore the algorithm can be made to run in poly(n) time and succeed with
high probability.

Taking the best of all the above approaches, we see that the complexity of unique decoding in
the exponent is upper-bounded by the complexity of the CDH problem and by nk ·(log q)·

(
n
k

)
/
(
n−e

k

)
.

List decoding. When the number of errors is larger than the unique decoding radius (i.e., half
the distance of the code), the technique of list decoding can still be used to recover all codewords
within a given radius of the received word. For example, the list decoding algorithm of Guruswami
and Sudan [12] for Reed-Solomon codes can recover all codewords within a radius of n−

√
nk (which

is always at least as large as the unique decoding radius (n− k + 1)/2).
The list decoding algorithm of [12] performs operations which are much more sophisticated

than those of the Berlekamp-Welch unique decoding algorithm [1]. (For example, the list decoding
algorithm needs to compute polynomial GCDs, perform Hensel liftings, and factor univariate poly-
nomials.) However, it turns out that all these operations can still be performed “in the exponent”
with the aid of a CDH oracle. Therefore, correcting significantly more errors (i.e., n−

√
nk) in the

exponent also reduces to the CDH problem. (We thank abhi shelat for his assistance with these
observations.)

The remainder of this paper will be devoted to establishing hardness results and lower bounds.

3 Bounded-Distance Decoding in the Exponent

In this section, we show that bounded-distance decoding (a relaxation of unique decoding) in the
exponent, under a large number of errors, is as hard as the discrete log problem. We define the
following code for a generator g of a cyclic group G of order q: Cq(E , k, g) = {(gw1 , . . . , gwn) : w ∈
RSq(E , k)}. Note that this code’s alphabet is the group G. The Hamming distance ∆ is defined
over Gn as it is for any other alphabet.

Problem: Bounded-distance decoding of Cq(E , k, g) under e errors. We denote this
problem by BDDE-RSq,E,k,e.

Instance: A generator g of G, and x such that ∆(x, Cq(E , k, g)) ≤ e.

Output: Any codeword p ∈ Cq(E , k, g) such that ∆(p,x) ≤ e.

6

We will relate BDDE-RS to the problem of finding a non-trivial representation of the identity
element relative to a random base, as proposed by Brands [3]:

Problem: Finding a nontrivial representation of the identity element 1 ∈ G, with
respect to a uniform base of n elements. We denote this problem FIND-REP.

Instance: A base (x1, . . . , xn) ∈ Gn, chosen uniformly.

Output: Any nontrivial (a1, . . . , an) ∈ Zn
q such that

∏n
i=1 xai

i = 1.

Brands showed that solving FIND-REP in G is as hard as computing discrete logs in G. For
completeness, we briefly recall the result and its proof.

Proposition 3.1 ([3], Proposition 3). If there exists an efficient randomized algorithm to solve
FIND-REP in G with non-negligible probability, then there exists an efficient randomized algorithm
which, on input (g, y = gz) for any generator g ∈ G and uniform z ∈ Zq, outputs z with over-
whelming probability.

Proof. Suppose algorithm B solves FIND-REP in G with non-negligible probability. We construct
the following algorithm to solve the discrete log problem in G: on input (g, y) where logg y is desired,
choose (r1, . . . , rn) and (s1, . . . , sn) from Zn

q uniformly and independently, and let xi = griysi .
Run B on (x1, . . . , xn), receiving correct output (a1, . . . , an) with non-negligible probability. If∑

siai 6= 0 mod q, output −
P

riaiP
siai

mod q.
The analysis is straightforward: first observe that the constructed (x1, . . . , xn) is uniform over

Gn, because g is a generator of prime order. Furthermore, the si are independent of xi, so they
are independent of B’s output. Therefore if (a1, . . . , an) is nontrivial, Pr[

∑
siai = 0 mod q] = 1/q,

which is negligible. Now suppose z = logg y. Then 1 =
∏

xai
i =

∏
gai(ri+zsi), which implies∑

ai(ri + zsi) = 0 mod q. Solving for z, we see that the algorithm’s output is correct.
Finally, because the discrete log problem is random self-reducible, an efficient algorithm that

solves discrete log with non-negligible probability can be converted into one which succeeds with
overwhelming probability.

3.1 Our Reduction

Our reduction from FIND-REP to BDDE-RS relies chiefly on the following technical lemma, which
bounds the probability that a random word in Gn (i.e., an instance of FIND-REP) is very far
from an RS codeword (in the exponent). This lemma may be of independent interest, and any
improvements to it will automatically reduce the error bound in our discrete log reduction.

Lemma 3.2. For any positive integer c ≤ n− k, and any code Cq(E , k, g),

Pr
x

[∆(x, Cq(E , k, g)) > n− k − c] ≤ qc · n2c(
n

k+c

) ,

where the probability is taken over the uniform choice of x from Gn.

Proof. It is apparent that ∆(x, Cq(E , k, g)) ≤ n − k − c if (and only if) there exists some set of
indices S ⊆ [n], |S| = k + c, satisfying the following condition, which we call the “low-degree”
condition for the set S:

7

The points {(αi, logg xi)}i∈S lie on a polynomial of degree < k.

Define S = {S ⊆ [n] : |S| = k + c}. For every S ∈ S, define XS to be the 0-1 random variable
indicating whether S satisfies the low degree condition, taken over the random choice of x. Let
X =

∑
S∈S XS .

Now for all S ∈ S, Prx[XS = 1] = q−c, because any k points of {(αi, logg xi)}i∈S define a unique
polynomial of degree at most k, and the remaining c points independently lie on that polynomial
each with probability 1/q. Then by linearity of expectation, E[X] =

(
n

k+c

)
/qc. Now by Chebyshev’s

inequality,

Pr[∆(x, Cq(E , k, g)) > n− k − c] = Pr[X = 0]
≤ Pr [|X − E[X]| ≥ E[X]]

≤
σ2

X

E[X]2
,

where σ2
Z denotes the variance of a random variable Z.

It remains to analyze σ2
X = E[X2]−E[X]2. The central observation is that for a large fraction of

S, S′ ∈ S, XS and XS′ are independent, hence they contribute little to the variance. In particular,
if |S ∩ S′| ≤ k, then E[XS |XS′ = 1] = E[XS], i.e. XS and XS′ are independent and E[XSXS′] =
E[XS]E[XS′].

For all other distinct pairs S, S′ such that |S∩S′| > k, E[XSXS′] ≤ E[XS] ≤ 1/qc. The number
of such pairs can be bounded (from above) as follows: we have

(
n

k+c

)
choices for S, then

(
k+c
k+1

)
choices of some k + 1 elements of S to include in S′, then

(
n−k−1

c−1

)
remaining arbitrary values to

complete the choice of S′. So the total number of pairs is at most
(

n
k+c

)(
k+c
k+1

)(
n−k−1

c−1

)
.

Putting these observations together, we obtain the following bound on σ2
X :

σ2
X =

∑
S∈S

(
E[X2

S]− E[XS]2
)

+
∑

S,S′∈S
S 6=S′

(E[XSXS′]− E[XS]E[XS′])

≤
∑
S∈S

E[XS] +
∑

S,S′∈S
S 6=S′

(E[XSXS′]− E[XS]E[XS′])

≤ E[X] +
∑

S,S′∈S
|S∩S′|>k

E[XSXS′] ≤ E[X]
[
1 +

(
k + c

c + 1

)(
n− k − 1

c− 1

)]
.

Since k + c ≤ n, we may apply the (very loose) bound of
(
n
y

)
≤ ny to the two binomial coefficients

to get σ2
X ≤ E[X] · n2c, and the claim follows.

Theorem 3.3. For any n, k, c and q such that
(

n
k+c

)
≥ 2qcn2c, if an efficient randomized algorithm

exists to solve BDDE-RSq,E,k,n−k−c with non-negligible probability (over a uniform instance and the
randomness of the algorithm), then an efficient randomized algorithm exists to solve the discrete
log problem in G.

The following corollary gives concrete relationships among n, k, q, and decoding radius for which
the theorem applies.

8

Corollary 3.4. For any constant ε > 0, δ ∈ (0, 1], and any q = 2O(`) exponential in the security
parameter `, for any polynomial n(`) = ω(`1/δε), any k = Ω(nδ), k ≤ (1−Ω(1))·n and any c ≤ k1−ε,
the discrete log problem in cyclic groups of order q reduces to BDDE-RSq,E,k,n−k−c.

Example 3.5. For k = n/2 and c = k0.99, we certainly have k ≤ (1 − Ω(1)) · n and k = Ω(n1).
Then a poly-time algorithm for bounded-distance decoding in the exponent for RS words of length
n = `100 under n/2 − k0.99 errors would imply a poly-time algorithm for discrete log in groups of
size about q = 2`. In contrast, the unique decoding radius of this code is n/4 = n/2− k/2, and the
list decoding radius is n −

√
nk ≈ n/2 − k · 0.414; both are close to the bounded-distance radius

above. Because RS codes can efficiently be uniquely- and list-decoded in the exponent using an
oracle for the Diffie-Hellman problem, the error radius of our reduction comes tantalizingly close
to providing a reduction from the discrete log problem to the Diffie-Hellman problem. (We thank
abhi shelat for this interpretation of the result.)

Proof of Corollary 3.4. Because
(

n
k+c

)
≥ (n

k+c)
k+c and qc ≥ 2n2c for sufficiently large `, then by

Theorem 3.3, it suffices to establish that for n = ω(`1/δε) and sufficiently large `,(
n

k + c

)k+c

≥ q2c ⇐⇒ (k + c) log
n

k + c
≥ 2c log q.

We will establish the second inequality by bounding the left side from below by Ω(k), and
bounding the right side from above by o(k), which suffices.

First we analyze the left term: because c = k1−ε,

lim
`→∞

n

k + c
=

n

k
≥ 1 + Ω(1),

so log n
k+c = Ω(1). Therefore the left term is Ω(k).

On the right, we have 2c log q = c · O(`). Because c ≤ k1−ε and n = ω(`1/δε) ⇐⇒ ` = o(nδε),
the right side is k1−ε · o(nδε). Finally nδ = O(k), so we get k1−ε · o(kε) = o(k), as desired.

Proof of Theorem 3.3. Suppose that algorithm D solves BDDE-RSq,E,k,n−k−c with non-negligible
probability. By Proposition 3.1, it will suffice to construct an algorithm A that solves FIND-REP
in G with non-negligible probability.
A works as follows: on input x = (x1, . . . , xn), where x is uniform over Gn, immediately run

D(g,x). By Lemma 3.2, (g,x) is an instance of BDDE-RSq,E,k,n−k−c with probability at least 1/2.
Then conditioned on this event, the instance is uniform, and with non-negligible probability D
outputs some p = (p1, . . . , pn) where ∆(p,x) ≤ n− k− c. Take any k +1 indices E ⊆ [n] such that
xi = pi for i ∈ E. Then any k of the xi linearly interpolate (in the exponent) to the remaining xi.
That is, we can compute non-trivial Lagrange coefficients λi for all i ∈ E such that

∏
i∈E xλi

i = 1.
Let λi = 0 for all i 6∈ E, and output (λ1, . . . , λn), which is a solution to FIND-REP.

4 Generic Algorithms for Noisy Polynomial Interpolation

Generic algorithms. Shoup proposed the generic algorithms framework [22] for computational
problems in groups. Informally, a generic algorithm only performs group operations in a black-box
manner; it does not use any particular property of the representation of group elements.

9

Formally, we consider a group G, an arbitrary set S ⊂ {0, 1}∗ with |S| ≥ |G|, and a random
injective encoding function σ : G→ S. We are only concerned with cyclic groups G of prime order
q, independent of their representation. Such group are all isomorphic to Zq under addition, so we
will assume without loss of generality that G = Zq under group operation +.

A generic algorithm A has access to an encoding list (σ(x1), . . . , σ(xt)) of elements x1, . . . , xt ∈
Zq. A can make unit-time queries of the form xi±xj to a group oracle by specifying the operation
and the indices i, j into the encoding list; the answer σ(xt+1), where xt+1 = xi ± xj , is appended
to the list. The query complexity of a generic algorithm is the number of elements in its encoding
list (including any provided as input) when it terminates.

The probability space of an execution of A consists of the random choice of input, the random
function σ, and the coins of A. If we bound the success probability of A over this space, then it
follows that for some encoding function σ, the same bound applies when the probability is taken
only over the input and A’s coins. Therefore any algorithm which uses the group in a “black-box”
manner is subject to the bound.

We remark that most general-purpose algorithms for discrete log and related problems are
indeed generic. One exception is the index calculus method, which requires a notion of “smoothness”
in the group G. Thus far, index calculus methods have not been successfully applied to groups over
the kinds of elliptic curves that are typically used in cryptography.

Schwartz’s lemma. A key tool in the analysis of generic algorithms is Schwartz’s Lemma, which
bounds the probability that a multivariate nonzero polynomial, defined over a finite field, is zero
at a random point.

Lemma 4.1 ([20]). For any nonzero polynomial f ∈ Fq[X1, . . . , Xt] of total degree d,

Pr[f(x1, . . . , xt) = 0] ≤ d/q,

where the probability is taken over a uniform choice of (x1, . . . , xt) ∈ Ft
q.

Noisy polynomial interpolation. We now consider a problem which we call “noisy polynomial
interpolation,” which is closely related to decoding for Reed-Solomon codes. (See Remark 4.2
below for details on this relationship.) This is exactly the problem which tends to appear in many
multiparty cryptographic protocols.

Problem: Generic noisy polynomial interpolation at a fixed point α0 6∈ E under e <
(n− k + 1)/2 errors. We denote this problem by GNPIq,E,α0,k,e.

Instance: An initial encoding list (σ(P (α1)+e1), . . . , σ(P (αn)+en), σ(1)) for a random
P (x) ∈ Zq[x], deg(P) < k, and a random e ∈ Zn

q such that wt(e) = e.

Output: σ(P (α0)).

Remark 4.2. GNPI is potentially a strictly easier problem than full decoding: it could be the case
that interpolating a noisy polynomial at some specific, rare point α0 is easier than recovering the
entire codeword (i.e., interpolating at all points α1, . . . , αn). Conversely, recovering the entire code-
word would permit generic Lagrange interpolation of the polynomial at any point α0. Therefore,
the bound for GNPI provided by Theorem 4.3 is potentially stronger than one which might be
provided for the full-decoding task.

10

Theorem 4.3. A generic algorithm for GNPIq,E,α0,k,e making m queries succeeds with probability

at most (m + 1)2
(
1/q +

(
n−k

e

)
/
(
n
e

))
.

Corollary 4.4. If ek = ω(n log n), then no efficient generic algorithm solves GNPIq,E,α0,k,e, except
with probability negligible in the security parameter. In particular, the algorithm of Canetti and
Goldwasser [4] (described in Section 2) is optimal.

Proof of Corollary 4.4. First,
(
n−k

e

)
/
(
n
e

)
≤

(
n−k

n

)e
= (1 − k/n)e = exp(−Ω(ek/n)), which is negli-

gible in n, and hence in the security parameter. Since 1/q is negligible as well, the total success
probability is negligible.

Proof of Theorem 4.3. We can write the real interaction between a generic algorithm A and its
oracle as a game, which proceeds as follows: let P0, . . . , Pk−1 and E1, . . . , En be indeterminants.
First, the game chooses p = (p0, . . . , pk−1) ← Zk

q and e ∈ Zn
q uniformly, such that wt(e) =

e. While interacting with A, the game will maintain a list of linear polynomials F1, . . . , Ft ∈
Zq[P0, . . . , Pk−1, E1, . . . , En]. Concurrently, A will have an encoding list (σ(x1), . . . , σ(xt)) where
xj = Fj(p, e). Furthermore, the game defines an “output polynomial” F0, which corresponds to
the correct output.

Initially, t = n + 1, Fj = Ej +
∑k−1

i=0 Piα
i
j for j ∈ [n], and Fn+1 = 1. The output polynomial is

F0 =
∑k−1

i=0 Piα
i
0.

WheneverAmakes a query for xi±xj , the game computes Ft+1 = Fi±Fj , xt+1 = Ft+1(p, e), σt+1 =
σ(xt+1), and appends σt+1 to A’s encoding list. When A terminates, we may assume that it always
outputs some σj it received from the oracle (otherwise A only succeeds with probability at most

1
q−m). Then A succeeds iff σj = σ(F0(p, e)).

The ideal game. We now consider an “ideal game” between A and a different oracle, in which
each distinct polynomial Fj is mapped to a distinct, random σj , independent of the value Fj(p, e).
More formally, the game proceeds as follows: initially, (σ1, . . . , σn+1) is just a list of distinct random
elements of S corresponding to polynomials F1, . . . , Fn+1 defined above. WheneverA asks for xi±xj

as its (t + 1)st query, the game computes Ft+1 = Fi±Fj . If Ft+1 = F` for any ` ≤ t, the game sets
σt+1 = σ`, otherwise it chooses σt+1 to be a random element of S − {σ1, . . . , σt}. Finally, when A
terminates, the game chooses a random value σ0 from S − {σ1, . . . , σm}, corresponding to F0. A
succeeds in this game if it outputs σ0; since A only produces output from {σ1, . . . , σm}, the success
probability in the ideal game is zero.

It is easy to see that A’s success probability in the real game is identical to its success probability
in the ideal game, conditioned on a “failure event” F not occurring. The event F is that Fi(p, e) =
Fi′(p, e) for some Fi 6= Fi′ , where i, i′ ∈ {0, . . . ,m}, and the probability is taken over p, e.

Analysis of the games. We now analyze Pr[F]: for any Fi 6= Fi′ , consider F = (Fi − Fi′) ∈
Zq[P0, . . . , Pk−1, E1, . . . , En]. Suppose that in e, the values ej for indices j ∈ M = {m1, . . . ,me}
are chosen uniformly, while the others are zero. Then we can consider a polynomial F ′ in the
indeterminants P0, . . . , Pk−1 and Em1 , . . . , Eme , where F ′ is simply F with zero substituted for
each Ej , j 6∈M .

Let e′ = (em1 , . . . , eme). We are then interested in Prp,e′ [F ′(p, e′) = 0]. There are two cases: if
F ′ is nontrivial, then this probability is 1/q by Lemma 4.1, because p and e′ are chosen uniformly.
Therefore it remains to bound Prp,e[F ′ = 0].

11

In order to have F ′ = 0, the constant term and all the coefficients of P` must be zero in F ′,
and hence also in F . By its construction, F is a nontrivial linear combination of F0, . . . , Fn, and
Fn+1 = 1: i.e., there exist c = (c0, . . . , cn) ∈ Zn+1

q and d ∈ Zq such that

F = d +
n∑

j=0

cjFj = d +
n∑

j=1

cjEj +
k−1∑
`=0

P` ·
n∑

j=0

cjα
`
j .

Therefore we have d = 0 and Ac = 0, where A is a Vandermonde matrix with A`+1,j+1 = α`
j for

j = 0, . . . , n and ` = 0, . . . , k − 1. Because any k columns of A are linearly independent and F is
nontrivial, we have wt(c) ≥ k + 1. In order for F ′ = 0, it must be that cj = 0 for every j ∈ M .
Because the set M is chosen independently of c, the probability of this event is at most

(
n−k

e

)
/
(
n
e

)
.

Finally, by a union bound over all pairs Fi 6= Fi′ , we obtain the result.

4.1 Relation to the DDH Problem

In this section, we show evidence that the noisy polynomial interpolation problem in G is not as
easy as the Decisional Diffie-Hellman (DDH) problem in G. Specifically, for the GNPI problem, we
show lower bounds for generic algorithms that are augmented with a DDH oracle.

Such lower bounds imply that, even in groups in which the DDH problem is easy, noisy poly-
nomial interpolation may still be hard. Such a scenario is not just idle speculation: there are
reasonable instances of so-called “gap Diffie-Hellman” groups [14], in which the DDH problem is
known to be easy, but the computational Diffie-Hellman problem is believed to be hard. Recalling
from Section 2 that GNPI is no harder than the CDH problem, this suggests that GNPI may be
a problem of intermediate hardness, located strictly between the (easy) DDH problem and the
(assumed hard) CDH problem.

Augmented generic algorithms. We augment a generic algorithm A with a DDH oracle as
follows: at any time, A can submit to the DDH oracle a triple (a, b, z) of indices into its encoding
list. The oracle replies whether xa · xb = xz mod q.

Theorem 4.5. A generic algorithm for GNPIq,E,α0,k,e, augmented with a DDH oracle, making mG

queries to its group oracle and mD queries to its DDH oracle succeeds with probability at most(
(mG + 1)2 + 2mD

) (
1/q +

(
n−k

e

)
/
(
n
e

))
.

Corollary 4.6. If ek = ω(n log n), no efficient generic algorithm augmented with a DDH oracle
solves GNPIq,E,α0,k,e, except with probability negligible in the security parameter.

Sketch of Theorem 4.5. As in the proof of Theorem 4.3, we consider “real” and “ideal” games, and
bound the probability of a failure event.

Both games proceed much in the same way: they maintain a list of polynomials Fi and answer
queries to the group oracle as before. The games answer DDH queries (a, b, z) in the following way:

• In the real game, respond “yes” if Fa(p, e) · Fb(p, e) = Fz(p, e), where the multiplication is
done in Zq.

• In the ideal game, respond “yes” if Fa · Fb = Fz, where the multiplication is of formal
polynomials in Zq[P0, . . . , Pk−1, E1, . . . , En]. (Because every Fi is linear, the ideal game will
only respond “yes” when at least one of Fa, Fb is a constant.)

12

The failure event F is the union of the old failure event (from the proof of Theorem 4.3) with
the event that, for some query (a, b, z) to the DDH oracle, Fa(p, e) · Fb(p, e) − Fz(p, e) = 0 when
Fa · Fb − Fz 6= 0.

As before, suppose M = {m1, . . . ,me} is the set of indices such that {ej}j∈M are chosen
uniformly, while the others are zero, and let e′ = (em1 , . . . , eme). For a particular query (a, b, z)
such that F = Fa · Fb − Fz 6= 0, consider the polynomial F ′ ∈ Zq[P0, . . . , Pk−1, Em1 , . . . , Eme]
which is defined to be F with zero substituted for all Ej , j 6∈ M . Define F ′

a, F
′
b, F

′
z similarly, so

F ′ = F ′
aF

′
b − F ′

z. Certainly the total degree of F ′ is at most 2. If F ′ 6= 0, then by Lemma 4.1,
Pr[F ′(p, e′) = 0] ≤ 2/q.

It remains to bound Pre[F ′ = 0 | F 6= 0]. In order to have F 6= 0 and F ′ = 0, we consider two
mutually exclusive cases: (1) Fa or Fb (or both) is a constant polynomial, or (2) Fa, Fb are both
non-constant polynomials, i.e. of positive degree.

In case (1), F is nonzero, linear, and is a linear combination of F1, . . . , Fn+1. As argued in the
proof of Theorem 4.3, Pr[F ′ = 0 | F 6= 0] ≤

(
n−k

e

)
/
(
n
e

)
.

For case (2), we first introduce some notation: for a polynomial H and a monomial Z, define
coeffZ(H) to be the coefficient of Z in H. We claim that for either i = a or i = b, F ′

i is a constant
polynomial. Suppose not: then there exist two indeterminants X, Y such that coeffX(F ′

a) 6= 0 and
coeffY (F ′

b) 6= 0. If X = Y , we see that coeffX2(F ′) 6= 0, a contradiction. If X 6= Y , we have

coeffXY (F ′) = coeffX(F ′
a)coeffY (F ′

b) + coeffX(F ′
b)coeffY (F ′

a) = 0.

Then coeffX(Fb) 6= 0, which implies that coeffX2(F ′) 6= 0, a contradiction.
Using reasoning as in the proof of Theorem 4.3, we see that

Pr[F ′
a or F ′

b is constant | Fa, Fb are non-constant] ≤ 2
(

n− k

e

)
/

(
n

e

)
.

Taking a union bound over all queries to the DDH oracle, we get the claimed result.

4.2 Decisional Variants

Certain decisional versions of the noisy polynomial interpolation problem are also hard for generic
algorithms. Here, in addition to the noisy points of the polynomial, the algorithm is given the
correct value P (α0) and a truly random value (in random order), and simply must decide which
is which. We denote this problem by DGNPIq,E,α0,k,e. The hardness of DGNPI implies that P (α0)
“looks random,” given the noisy values of the polynomial.

Problem: Decisional generic noisy polynomial interpolation at a fixed point α0 6∈ E
under e < (n− k + 1)/2 errors. We denote this problem by DGNPIq,E,α0,k,e.

Instance: Encoding list (σ(P (α1)+e1), . . . , σ(P (αn)+en), σ(1), σ(z0), σ(z1)) for a ran-
dom P (x) ∈ Zq[x], deg(P) < k, a random e ∈ Zn

q such that wt(e) = e, and a
random bit b where zb = P (α0) and z1−b is random.

Output: The bit b.

Theorem 4.7. A generic algorithm for DGNPIq,E,α0,k,e making m queries succeeds with probability

at most 1
2 + 2m2

(
1/q +

(
n−k

e

)
/
(
n
e

))
.

13

Sketch. The proof is very similar to the proof of Theorem 4.3. We again imagine a game which
maintains a list of polynomials Fi in the indeterminants P0, . . . , Pk−1, E1, . . . , En, and two new
indeterminants Z0, Z1. In the ideal game, the two input polynomials corresponding to z0 and z1 are
just Z0 and Z1, respectively. In the ideal game, every distinct polynomial is mapped to a different
string, and the algorithm succeeds with probability 1/2 because its view is independent of b. The
failure event is that for some Fi 6= Fi′ , either F (p, e,

∑k−1
j=0 pjα

j
0, z) = 0 or F (p, e, z,

∑k−1
j=0 pjα

j
0) = 0

where F = Fi−Fi′ and z is chosen at random. From here, the analysis proceeds as in Theorem 4.3.

In fact, we can extend the definition of DGNPI instances to include the value of the polynomial P
at several distinct points β0, . . . , βr 6∈ E , instead of just at α0. These evaluations “look random” to
generic algorithms, with a distinguishing advantage bounded by 2m2

(
1/q +

(
n−(k−r)

e

)
/
(
n
e

))
. Also,

as in Section 4.1, we can prove that DGNPI is hard for generic algorithms that are augmented with
a DDH oracle. We defer the details to the full version.

5 Conclusions and Open Problems

We have shown evidence that error correction (of Reed-Solomon codes) in the exponent is hard,
and that its hardness seems to be qualitatively different than that of the Diffie-Hellman problems.
We can think of several related open problems, including:

• Find some other family of codes which admits an efficient (preferably generic) algorithm for
decoding in the exponent, and which can be used as the basis of a secret-sharing scheme —
or show that the two goals are mutually incompatible.

• Demonstrate a non-generic decoding algorithm for a specific class of cyclic groups with per-
formance better than the generic bounds (perhaps using ideas from index calculus methods).

• Provide new constructions of standard (or new) cryptographic primitives, assuming error
correction in the exponent is hard. Such constructions would be useful both as a hedge
against possible attacks on other (stronger) assumptions, and for any unique functionality
properties they may have.

• Show new connections between the discrete log and Diffie-Hellman problems, using the fact
that decoding is often easy with a CDH oracle.

In addition, the general idea of correcting errors in “partially hidden” data (i.e., data that has been
obscured by some one-way function) seems ripe with interesting problems.

Acknowledgements

The author gratefully thanks Shafi Goldwasser, Ran Canetti, Alon Rosen, Adam Smith, Tal Rabin,
and abhi shelat for helpful comments and discussions, and the anonymous reviewers for their
valuable and constructive suggestions.

14

References

[1] E. Berlekamp and L. Welch. Error correction of algebraic block codes. US Patent Number
4,633,470, 1986.

[2] D. Boneh and M. K. Franklin. An efficient public key traitor tracing scheme. In CRYPTO ’99:
Proceedings of the 19th Annual International Cryptology Conference on Advances in Cryptol-
ogy, pages 338–353, London, UK, 1999. Springer-Verlag.

[3] S. Brands. Untraceable off-line cash in wallet with observers. In CRYPTO ’93: Proceedings of
the 13th annual international cryptology conference on Advances in cryptology, pages 302–318,
New York, NY, USA, 1994. Springer-Verlag New York, Inc.

[4] R. Canetti and S. Goldwasser. An efficient threshold public key cryptosystem secure against
chosen ciphertext attack. In Advances in Cryptology — EUROCRYPT ’99, volume 1592, pages
90–106. Springer-Verlag, 1999.

[5] Q. Cheng and D. Wan. On the list and bounded distance decodability of the Reed-Solomon
codes. In Proc. FOCS 2004, pages 335–341. IEEE Computer Society, 2004.

[6] R. Cramer and I. Damg̊ard. Secret-key zero-knowlegde and non-interactive verifiable expo-
nentiation. In 1st TCC, pages 223–237, 2004.

[7] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In Advances in Cryptology — CRYPTO’98, 1998.

[8] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Infor-
mation Theory, IT-22(6):644–654, 1976.

[9] Y. Dodis. Efficient construction of (distributed) verifiable random functions. In 6th PKC,
pages 1–17, 2003.

[10] T. E. Gamal. A public-key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, 31:469–472, 1985.

[11] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold dss signatures. In
Advances in Cryptology — Eurocrypt ’96, pages 354–371, 1996.

[12] V. Guruswami and M. Sudan. Improved decoding of reed-solomon and algebraic-geometric
codes. In IEEE Symposium on Foundations of Computer Science, pages 28–39, 1998.

[13] V. Guruswami and A. Vardy. Maximum-likelihood decoding of Reed-Solomon codes is NP-
hard. In SODA, 2005.

[14] A. Joux and K. Nguyen. Separating decision Diffie-Hellman from computational Diffie-Hellman
in cryptographic groups. J. Cryptology, 16(4):239–247, 2003.

[15] R. J. McEliece and D. V. Sarwate. On sharing secrets and Reed-Solomon codes. Comm. ACM,
24(9):583–584, 1981.

[16] M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions and kdcs. In
Advances in Cryptology — Eurocrypt ’99, pages 327–346, 1999.

15

[17] C. Park and K. Kurosawa. New ElGamal type threshold digital signature scheme. IEICE
Trans. Fundamentals, E79-A(1):86–93, January 1996.

[18] M. D. Raimondo and R. Gennaro. Secure multiplication of shared secrets in the exponent.
Cryptology ePrint Archive, Report 2003/057, 2003.

[19] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. J. SIAM, 8(2):300–304,
June 1960.

[20] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM,
27(4):701–717, 1980.

[21] A. Shamir. How to share a secret. Comm. ACM, 22(11):612–613, 1979.

[22] V. Shoup. Lower bounds for discrete logarithms and related problems. In Proc. Eurocrypt ’97,
pages 256–266, 1997.

[23] M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound. Journal of
Complexity, 13(1):180–193, 1997.

16

