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Fig. 14.1 A schema of the main currents of the global ocean. Key: STG – SubTropical
Gyre; SPG – SubPolar Gyre; WBC – Western Boundary Current; ECS – Equatorial Current
System; NA – North Atlantic; SA – South Atlantic; NP – North Pacific; SP – South Pacific;
SI – South Indian; ACC – Antarctic Circumpolar Current; ATL – Atlantic; PAC – Pacific.
The figure is a qualitative, and not quantitative, representation of the actual flow.
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Fig. 14.2 Top: the time averaged velocity field at a depth of 75 m in the North At-
lantic, obtained by constraining a numerical model to observations. Bottom: the
streamfunction of the vertically integrated flow, in Sverdrups (1 Sv = 109 kg s−1).
Note the presence of an anticyclonic subtropical gyre, a cyclonic subpolar gyre, and
intense western boundary currents.1
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Fig. 14.3 Two possible Sverdrup flows, ψI , for the wind stress shown in the centre.
Each solution satisfies the no-flow condition at either the eastern or western bound-
ary, and a boundary layer is therefore required at the other boundary. Both flows
have the same, equatorward, meridional flow in the interior. Only the flow with the
western boundary current is physically realizable, however, because only then can
friction produce a curl that opposes that of the wind stress, so allowing the flow to
equilibrate.
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Fig. 14.4 Two solutions of the Stommel model. Upper panel shows the streamfunc-
tion of a single-gyre solution, with a wind stress proportional to − cos(πy/a) (in a
domain of side a), and the lower panel shows a two-gyre solution, with wind stress
proportional to cos(2πy/a). In both cases εS = 0.04.

From Vallis (2006)

From Vallis (2006)



i
i

i
i

i
i

i
i

Stommel

0 0.5 1
0

0.5

1
Munk

0 0.5 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1

0

v

x
0 0.2 0.4 0.6 0.8 1

0

v

x

Fig. 14.5 The Stommel and Munk solutions, (14.49) with εS = ε1/3
M = 0.04, with

the wind stress τ = − cosπy, for x,y ∈ (0,1). Upper panels are contours of
streamfunction in the x-y plane, and the flow is clockwise. The lower panels are
plots of meridional velocity, v, as a function of x, in the centre of the domain (y =
0.5). The Munk solution can satisfy both no-normal flow and one other boundary
condition at each wall, here chosen to be no-slip.
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Fig. 14.6 The solution (streamfunction, in Sverdrups) to the Stommel–Munk problem
numerically calculated for the North Atlantic, using the observed wind field. The
model ocean has realistic geometry, but is flat-bottomed. The calculation qualita-
tively reproduces the large-scale patterns, including the subtropical and subpolar
gyre and the western intensification of both, although the separation of the Gulf
Stream from the coast is a little too far North. Compare with Fig. 14.2.2
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Fig. 14.7 Solutions to the Stommel problem with a wind stress that increases linearly
from y = 0 to y = 1, as in (14.50). The interior solution is ψI = (1 − x), or
vI = −1, necessitating zonal boundary layers at y = 0 and y = 1, as well as a
western boundary layer at x = 0.
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Fig. 14.8 The nonlinear perturbation solution of the Stommel problem, calculated
according to (14.63). On the left is the perturbation, −Rβπ3/(2ε2

S) sin(2πy)xe−x/εS
, and on the right is the reconstituted solution, using Rβ = 10−4 and ε = 0.04.
Dashed contours are negative.
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Fig. 14.9 Streamfunctions in solutions of the nonlinear Stommel and Munk problems,
obtained numerically with a Newton’s method, for various values of the nonlinearity
parameter S = R1/2

β . As in the perturbation solution, for small values of nonlin-
earity the centre of the gyre moves polewards, strengthening the boundary current
in the north-western quadrant (for a northern-hemisphere solution). As nonlinearity
increases, the recirculation of the gyre dominates, and the solutions become increas-
ingly inertial.3
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Fig. 14.10 Putative inertial boundary layers connected to a westward flowing internal flow (left panel)
or eastward flowing internal flow (right panel), in the Northern Hemisphere. Westward flow into the
western boundary layer, or flow emerging from an eastern boundary layer, is able to conserve its
potential vorticity through a balance between changes in relative vorticity and Coriolis parameter.
But flow cannot emerge smoothly from a western boundary layer into an eastward flowing interior
and still conserve its potential vorticity. The right panel thus has inconsistent dynamics.
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Fig. 14.11 The Fofonoff solution. Plotted are contours (streamlines) of (14.87) in
the plane 0 < x < xE , 0 < y < yN with U = 1, yN = 1, xE = yN = 1, y0 = 0.5
and δI = 0.05. The interior flow is westward everywhere, and ψ = 0 at y = y0.
In addition, boundary layers of thickness δI =

√
U/β bring the solution to zero at

x = (0, xE) and y = (0, yN), excepting small regions at the corners.
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Fig. 14.12 The β-plume, namely Green’s function for the Stommel problem. Specif-
ically we plot the solution of (14.93) with ψ = 0 at the walls, and a delta-function
source at x = 0.75, y = 0.5. The streamfunction trails westward from the source,
as if it were a tracer being diffused while being advected westward along lines of
constant f .
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Fig. 14.13 The two-gyre Sverdrup flow (solid contours) for (a) a flat-bottomed domain
and (b) a domain with sloping sidewalls. The f/h contours are dotted.4
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    Streamfunction (flat bottom)           Streamfunction (sloping sidewall)             Bottom             
pressure-stress curl
        (shaded)

Fig. 14.14 The numerically obtained steady solution to the homogenous problem
with a two-gyre forcing and friction, for a flat-bottomed doman and a domain with
sloping western sidewall. The shaded regions in the right panel show the regions
where bottom pressure-stress curl is important, in the meridional flow of the western
boundary currents.5
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Fig. 14.15 Contours of q = βy + A sinπy(1 − x), with β = 1. The dashed line is
q = 1, which separates the blocked region to the east (q < 1) from the closed region
to the west (q > 1). See Fig. 14.16 for plots of the other fields.
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Fig. 14.16 Upper- and lower-level potential vorticity and streamfunction for the
canonical wind stress (14.111). The field of q is that of Fig. 14.15 with A = 1.
The dashed line divides the blocked region from the closed region. The lower layer
streamfunction ψ2 is non-zero only in the closed region, and here q2 = βL and
q1 = 2βy − βL. In the blocked region the upper layer carries all of the Sverdrup
transport. Both the streamfunction and potential vorticity are continuous at the di-
vide: ψ2 = 0 and q2 = q = βL.
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Fig. 14.17 Solutions of (14.112) for two different barotropic streamfunctions. On the left ψB =
(1 − x) sinπy and on the right ψB = 1 − (x2 + y2) for x2 + y2 < 1, zero elsewhere. The upper
panels show contours of the depth of the wind-influenced region [solutions of (14.145)]. The depth
increases to the northwest in the left panel, and to the north in the right panel, so that in both
cases the area of the bowl shrinks with depth. The lower panels are contours of z + (βL/f0)ψz/2,
with βL/f0 = 1/2, obtained from (14.141) or (14.146), at x = 0.25 and x = −0.5 in the two cases.
These are isopcynal surfaces, with a rather large value of βL/f0 to exaggerate the displacement in
the bowl region. The dashed lines indicate the boundary of the bowl region, outside of which the
isopycnals are flat.
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Fig. 14.18 As for Fig. 14.17, but now a perspective of potential vorticity [obtained from (14.147)].
Within the bowls the circulation is clockwise and the potential vorticity is uniform. Outside the
bowls the fluid is stationary and the potential vorticity has the planetary value βy. The value of
potential vorticity within the bowl is the planetary value at the poleward edge of the gyre, and is the
same value at all depths.
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Fig. 15.1 The mean meridional overturning circulation in the North Atlantic, obtained
with a combination of observations and a model. The contours are the streamfunc-
tion of the zonally averaged meridional flow. The units are Sverdrups, and the circu-
lation is mostly clockwise, with sinking at high latitudes.1
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Fig. 15.2 The zonally averaged potential density (σθ) in the Atlantic ocean, as a
function of depth (m) and latitude. Note the break in the vertical scale at 1000 m.
The region of rapid change of density (and temperature) is concentrated in the upper
kilometre, in the main thermocline, below which the ocean has a much more uniform
density.2
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Fig. 15.3 A schema of sideways convection. The fluid is differentially heated and
cooled along its top surface, whereas all the other walls are insulating. The result
is, typically, a small region of convective instability and sinking near the coldest
boundary, with generally upwards motion elsewhere.3
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Fig. 15.4 The streamfunction in a numerical simulation of two-dimensional sideways
convection.4 The circulation is clockwise, and the imposed temperature at the top
linearly decreases from left to right, and the other walls are insulating. From left to
right the Rayleigh numbers are 104, 106 and 108, and the contour interval is 1, 4 and
10 in arbitrary units. The Prandtl number is 10.
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Fig. 15.5 The temperature or buoyancy field corresponding to the streamfunction
fields shown in Fig. 15.4. Note an increasingly sharp gradient (a thermocline) near
the top as the Rayleigh number increases, and that the bulk of the domain is filled
with the densest available fluid.
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Fig. 15.6 A two-box model of relevance to the overturning circulation of the ocean.
The shaded walls are porous, and each box is well mixed by its stirrer. Temperature
and salinity evolve by way of fluid exchange between the boxes via the capillary
tube and the overflow, and by way of relaxation with the two infinite reservoirs at
(+T∗,+S∗) and (−T∗,−S∗).
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Fig. 15.7 Left panel: graphical solution of the two-box model. The straight line has
unit slope and passes through the origin, and the curved lines plot the function f(Φ)
as given by the right-hand side of (15.43). The intercepts of the two are solutions to
the equation. The parameters for the three curves are: a, γ = 5, δ = 1/6, µ = 1.5; b,
γ = 1, δ = 1/6, µ = 1.5; c, γ = 5, δ = 1/6, µ = 0.75. Right panel: the same except
with Φ2 in place of |Φ| on the rhs of (15.43).
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Fig. 15.8 A three-box model. Each box contains fluid with uniform values of temper-
ature and salinity, each exchanges fluid with its neighbour, and in each the temper-
ature and salinity are relaxed toward fixed atmospheric values.
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Fig. 15.9 Schematic of four solutions to the three box model with the symmetric
forcing S∗s = S∗n and T∗n = T∗s . The two solutions on the top row have an asymmetric,
‘pole-to-pole’, circulation whereas the solutions on the bottom row are symmetric.5

From Vallis (2006)

From Vallis (2006)



i
i

i
i

i
i

i
i
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Ω

Fig. 15.10 The experimental set-up in the Stommel–Arons–Faller rotating tank exper-
iment. (a) A plan view of the apparatus. The fluid is contained in the sector at left.
(b) Side view. The free surface of the fluid slopes up with increasing radius, giving a
balance (in the rotating frame) between the centrifugal force pointing outwards and
the pressure force pointing inwards. Small pipes may be introduced into the fluid to
provide mass sources and sinks.
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Fig. 15.11 Idealized examples of the flow in the rotating sector experiments, with
various locations of a source (S) or sink (−S) of mass.
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Fig. 15.12 The structure of simple Stommel–Arons ocean model of the abyssal cir-
culation. Convection at high latitudes provides a localized mass-source to the lower
layer, and upwelling through the thermocline provides a more uniform mass sink.

From Vallis (2006)

From Vallis (2006)



i
i

i
i

i
i

i
i

λW

λE

Pole (yN)

Equator (yS)

xW xE

Equator

S0

S0

(a) (b)

y

Fig. 15.13 Abyssal circulation in a spherical sector (left) and in a corresponding Carte-
sian rectangle (right).
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Fig. 15.14 Mass budget in an idealized abyssal ocean. Polewards of some latitude y,
the mass source (S0) plus the polewards mass flux across y (TI ) are equal to the sum
of the southwards mass flux in the western boundary current (TW ) and the integrated
loss due to upwelling (U ) polewards of y. See (15.69).
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Fig. 15.15 Schematic of a Stommel–Arons circulation in a single sector. The trans-
port of the western boundary current is greater than that provided by the source
at the apex, illustrating the property of recirculation. The transport in the west-
ern boundary current TW decreases in intensity equatorwards, as it loses mass to
the polewards interior flow, and thence to upwelling. The integrated sink, due to
upwelling, U , exactly matches the strength of the source, S.
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Fig. 15.16 Schematic of a Stommel–Arons circulation in a two-hemisphere basin.
There is only one mass source, and this is in the Southern Hemisphere and for con-
venience it has a strength of 2. Although there is no source in the Northern Hemi-
sphere, there is still a western boundary current and a recirculation. The integrated
sinks due to upwelling exactly match the strength of the source.
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Fig. 15.17 The pressure field Φ for the shallow water Stommel–Arons model, as given
by (15.102) with r/β = 0.04xE , f = βy and y = 0 at the equatorwards edge of the
domain. The arrows indicate the flow direction, with the western boundary current
diminishing in intensity as it moves equatorwards. The convective mass source is,
implicitly, just polewards of the domain. (Note that the pressure field is not exactly
a streamline.)
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Fig. 15.18 The ocean currents at a depth of 2500 m in the North Atlantic, obtained us-
ing a combination of observations and model (as in Fig. 14.2). Note the southwards
flowing deep western boundary current.
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Fig. 16.1 Cartoon of a single-celled meridional overturning circulation. Sinking is
concentrated at high latitudes and upwelling spread out over lower latitudes. The
thermocline is the boundary between the cold abyssal waters, with polar origins,
and the warmer near-surface subtropical water. Wind forcing in the subtropical gyre
mechanically pushes the warm water down, increasing the depth of the thermocline.
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Fig. 16.2 Sections of potential density (σθ) in the North Atlantic. Upper panel: merid-
ional section at 53° W, from 5° N to 45° N, across the subtropical gyre. Lower panel:
zonal section at 36° N, from about 75° W to 10° W. A front is associated with the
western boundary current and its departure from the coast near 40° N. In the upper
northwestern region of the subtropical thermocline there is a region of low stratifi-
cation known as MODE water: isopycnals above this outcrop in the subtropical gyre
and are ‘ventilated’; isopycnals below the MODE water outcrop in the subpolar gyre
or ACC.1
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Fig. 16.3 Scaling the thermocline. The diagonal lines mark the diffusive thermocline
of thickness δ and depth D(y). The advective scaling for D(y), i.e., Da, is given by
(16.8), and the diffusive scaling for δ is given by (16.13).
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Fig. 16.4 Solution of the one-dimensional thermocline equation, (16.27), with bound-
ary conditions (16.28), for two different values of the diffusivity: κ̂ = 3.2×10−3 (solid
line) and κ̂ = 0.4×10−3 (dashed line), in the domain 0 ≤ ẑ ≤ −1. ‘Vertical velocity’ is
W , ‘temperature’ is −Wẑẑ, and all units are the non-dimensional ones of the equation
itself. A negative vertical velocity, ŴE = −1, is imposed at the surface (representing
Ekman pumping) and B0 = 10. The internal boundary layer thickness increases as
κ̂1/3, so doubling in thickness for an eightfold increase in κ̂. The upwelling velocity
also increases with κ̂ (as κ̂2/3), but this is barely noticeable on the graph because the
downwelling velocity, above the internal boundary layer, is much larger and almost
independent of κ̂. The depth of the boundary layer increases as Ŵ 1/2

E , so if ŴE = 0
the boundary layer is at the surface, as in Fig. 16.5.
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Fig. 16.5 As for Fig. 16.4, but with no imposed Ekman pumping velocity at the upper
boundary (ŴE = 0), again for two different values of the diffusivity: κ̂ = 3.2 × 10−3

(solid line) and κ̂ = 0.4×10−3 (dashed line). The boundary layer now forms at the up-
per surface. The boundary thickness again increases with diffusivity and, even more
noticeably, so does the upwelling velocity — this scales as κ̂2/3, and so increases
fourfold for an eightfold increase in κ̂.

From Vallis (2006)

From Vallis (2006)



i
i

i
i

i
i

i
i

Fig. 16.6 The simplified boundary-layer structure of the internal thermocline. In the
limit of small diffusivity the internal thermocline forms a boundary layer, of thickness
δ in the figure, in which the temperature and buoyancy change rapidly.
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Fig. 16.7 Schema of the large-scale circulation and structure of the main thermocline, in a single-
hemisphere ocean driven by wind stress (broad arrows) and a meridional gradient of heating at the
surface. The subtropical–subpolar gyre boundary is a constant latitude φ0, where the wind-stress
curl changes sign. ‘VT’ denotes the ventilated thermocline, an advective regime of thickness Da,
and ‘IT’ denotes the internal thermocline, a diffusive internal boundary layer of thickness δI . The
thin arrows indicate the meridional overturning circulation and the flow in the Ekman layer near
the ocean surface. The thick line is a temperature profile at latitude φ1: the temperature drop
across the internal thermocline is ∆TSP , equal to the meridional temperature difference across the
subpolar gyre; the temperature drop across the ventilated thermocline is ∆TST , the temperature
difference across the subtropical gyre.2
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Fig. 16.8 A reduced gravity, single-layer model. A single moving layer lies above a
deep, stationary layer of higher density. The upper surface is rigid. A thin Ekman
layer may be envisioned to lie on top of the moving layer, providing a vertical velocity
boundary condition.
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Fig. 16.9 A two-layer model of the ventilated thermocline. Two moving layers lie
above an infinitely deep, stationary layer of higher density. Models with more moving
layers may be constructed by straightforward extension.
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Fig. 16.10 Contour plots of total thickness and upper layer thickness in a two-layer
model of the ventilated thermocline. The thickness generally increases westward,
and the flow is clockwise. The shadow zone and the western pool are shaded, and
no contours are drawn in the latter. The outcrop latitude, y2 = 0.8, is marked
with a dotted line. [Parameters are g′1 = g′2 = 1, β = 1, f0 = 0.5, He = 0.5, and
wE = − sin(πy).]
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Fig. 16.11 The shadow zone in the ventilated thermocline. Layer 2 outcrops at
y = y2. A column moving equatorwards along the eastern boundary in layer 2
is subducted at y2. It cannot remain against the eastern wall and both preserve its
potential vorticity, which implies the column shrinks, at the same time that the no-
normal flow condition is satisfied, as by geostrophy this implies the layer depth is
constant. Thus, the column must move westward, along the boundary of a ‘shadow
zone’ within which there is no motion. The streamline it follows is the isoline of
constant total thickness of the two moving layers [see (16.120) or (16.122c)].
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Fig. 16.12 Two north-south section of layer thickness, at different longitudes, from
the same solution as Fig. 16.10 and assuming a ventilated western pool. The num-
bers refer to the fluid layer. The section on the left passes through the western
ventilated pool region, where all the Sverdrup transport is taken up by the top layer.
The region near y = 0 in both plots where the total depth of the thermocline is
constant is the shadow zone.
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Fig. 16.13 Idealized geometry of the Southern Ocean: a re-entrant channel, partially
blocked by a sill, is embedded within a closed rectangular basin; thus, the channel
has periodic boundary conditions, whereas elsewhere there is no normal flow. The
channel is a crude model of the Antarctic Circumpolar Current, with the area over
the sill analagous to the Drake Passage.
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Fig. 16.14 The surface buoyancy bs , merdional Ekman velocity vE , vertical Ekman
velocitywE and the solution streamlines for the geostrophic horizontal flow, omitting
the western boundary currents. The ordinate in all plots is latitude, with the pole at
the bottom, and the four fields are given by, respectively, (16.73), (16.74a), (16.74b)
and (16.75), with purely zonal flow given by (16.78) in the channel.
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Fig. 16.15 Cross-section of the structure of the single-hemisphere ocean model de-
scribed in section 16.5.1. The domain is zonally closed equatorwards of y2 and
polewards of y1, with a zonally periodic channel between latitudes y1 and y2 and
above the sill, which has height ηsill. The arrows indicate the fluid flow driven by the
equatorwards Ekman transport in the channel, and the solid lines are isopycnals.
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Fig. 16.16 As for Fig. 16.15, but now for a two-hemisphere ocean with a source of
dense water, b3, at high northern latitudes. The solid lines are isopycnals, and here
the wind is zero in the Northern Hemisphere.
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Fig. 16.17 A schema of the stratification and overturning circulation obtained by
combining the thermocline models of sections 16.1–16.4 with the model of deep
overturning of section 16.5. Key: DP – Drake Passage; EL – Ekman layer; VT – venti-
lated thermocline; IT – internal thermocline; AABW – Antarctic Bottom Water; AAIW –
Antarctic Intermediate Water; NADW – North Atlantic Deep Water: MW – Mode Water.
The shaded regions mark the main regions of stratification and the Drake Passage.
The real ocean is more complex; see text.
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Fig. 16.18 Schema of the major currents in the Southern Ocean. Shown are the South
Atlantic subtropic gyre, and the two main cores of the ACC, associated with the Polar
front and the sub-Antarctic front.3
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(a) (b)

Fig. 16.19 The zonally averaged temperature field in numerical solutions of the prim-
itive equations in a domain similar to that of Fig. 16.13 (except that here the channel
and sill are nestled against the polewards boundary). Panel (a) shows the steady
solution of a diffusive model with no baroclinic eddies, and (b) shows the time aver-
aged solution in a higher-resolution model that allows baroclinic eddies to develop.
Two contour values in each panel are labelled. The dotted lines show the channel
boundaries and the sill.4
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Fig. 16.20 Eddy fluxes and form drag in a Southern Hemisphere channel, viewed
from the south. In this example, cold (less buoyant) water flows equatorwards and
warm water polewards, so that v ′b′ < 0. The pressure field associated with this flow
(dashed lines) provides a form drag on the successive layers, Fp, shown. At the ocean
bottom the westward form drag on the fluid arising through its interaction with the
orography of the sea-floor is equal and opposite to that of the eastward wind stress
at the top. The mass fluxes in each layer are given by v ′h′ ≈ −∂z(v ′b′/N2). If the
magnitude of buoyancy displacement increases with depth then v ′h′ < 0.
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Fig. 16.21 An example of the meridional flow in an eddying channel. The eddying
flow may be organized such that, even though at any given level the Eulerian merid-
ional flow may be small, there is a net flow in a given isopycnal layer. The residual
(v∗) and Eulerian (v) flows are related by v∗ = v + v ′h′/h; thus, the thickness-
weighted average of the eddying flow on the left gives rise to the residual flow on
the right, where ηi denotes the mean elevation of the isopycnal interface ηi.
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Fig. 16.22 The meridional circulation in the re-entrant channel of an idealized, ed-
dying numerical model of the ACC (as in Fig. 16.19, but showing only the region
south of 40° S). Left panel, the zonally averaged Eulerian circulation. Middle panel,
the eddy-induced circulation. Right panel, the residual circulation. Solid lines rep-
resent a clockwise circulation and dashed lines represent anticlockwise circulation.
The faint dotted lines are the mean isopycnals. The overturning circulation of the
ACC is called the Deacon Cell.
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Fig. 16.23 Structure and notational conventions used for a multi-layered model.
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