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Fig. 1.1 Mass conservation in an Eulerian cuboid control volume.
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Fig. 1.2 Mass conservation in an arbitrary Eulerian control volume V bounded by a
surface S. The mass gain,

∫
V (∂ρ/∂t)dV is equal to the mass flowing into the volume,

−
∫
S(ρv) · dS = −

∫
V ∇ · (ρv)dV .
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Fig. 1.3 A temperature–salinity diagram for seawater, calculated using an accurate
empirical equation of state. Contours are (density − 1000) kg m−3, and the temper-
ature is potential temperature, which in the deep ocean may be less than in situ
temperature by a degree or so (see Fig. 1.4). Left panel: at sea-level (p = 105 Pa
= 1000 mb). Right panel: at p = 4× 107 Pa, a depth of about 4 km. Note that in both
cases the contours are slightly convex.
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Fig. 1.4 Examples of the variation of potential temperature of seawater with pressure,
temperature and salinity. Left panel: the sloping lines show potential temperature
as a function of pressure at fixed salinity (S = 35 psu) and temperature (13.36° C).
The solid line is computed using an accurate, empirical equation of state, the almost-
coincident dashed line uses the simpler expression (1.153) and the dotted line (la-
belled L) uses the linear expression (1.154c). The near vertical solid line, labelled S,
shows the variation of potential temperature with salinity at fixed temperature and
pressure. Right panel: Contours of the difference between temperature and potential
temperature, (T − θ) in the pressure–temperature plane, for S = 35 psu. The solid
lines use an accurate empirical formula, and the dashed lines use (1.153). The sim-
pler equation can be improved locally, but not globally, by tuning the coefficients.
(100 bars of pressure (107 Pa or 10 MPa) is approximately 1 km depth.)
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Fig. 1.5 Examples of the variation of density of seawater (minus 1000 kg m−3) with
(a) potential temperature (° C); (b) salt (psu); and (c) pressure (Pa), for seawater. Panel
(d), shows the thermal expansion coefficient, ̂βT = −ρ−1(∂ρ/∂T )p,S K−1, for each of
the two curves in panel (a).
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Fig. 2.1 A vector C rotating at an angular velocity Ω. It appears to be a constant
vector in the rotating frame, whereas in the inertial frame it evolves according to
(dC/dt)I = Ω× C.
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Fig. 2.2 Left: directions of forces and coordinates in true spherical geometry. g is
the effective gravity (including the centrifugal force, C) and its horizontal component
is evidently non-zero. Right: a modified coordinate system, in which the vertical
direction is defined by the direction of g, and so the horizontal component of g
is identically zero. The dashed line schematically indicates a surface of constant
geopotential. The differences between the direction of g and the direction of the
radial coordinate, and between the sphere and the geopotential surface, are much
exaggerated and in reality are similar to the thickness of the lines themselves.
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Fig. 2.3 The spherical coordinate system. The orthogonal unit vectors i, j and k point
in the direction of increasing longitude λ, latitude ϑ, and altitude z. Locally, one may
apply a Cartesian system with variables x, y and z measuring distances along i, j
and k.
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Fig. 2.4 (a) On the sphere the rotation vector Ω can be decomposed into two com-
ponents, one in the local vertical and one in the local horizontal, pointing toward
the pole. That is, Ω = Ωy j + Ωzk where Ωy = Ω cosϑ and Ωz = Ω sinϑ. In geo-
physical fluid dynamics, the rotation vector in the local vertical is often the more
important component in the horizontal momentum equations. On a rotating disk,
(b), the rotation vector Ω is parallel to the local vertical k.
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Fig. 2.5 Schematic of geostrophic flow with a positive value of the Coriolis parameter
f . Flow is parallel to the lines of constant pressure (isobars). Cyclonic flow is anti-
clockwise around a low pressure region and anticyclonic flow is clockwise around a
high. If f were negative, as in the Southern Hemisphere, (anti)cyclonic flow would
be (anti)clockwise.

From Vallis (2006)

From Vallis (2006)



i
i

i
i

i
i

i
i

-

-

Fig. 2.6 The mechanism of thermal wind. A cold fluid is denser than a warm fluid, so
by hydrostasy the vertical pressure gradient is greater where the fluid is cold. Thus,
the pressure gradients form as shown, where ‘higher’ and ‘lower’ mean relative to
the average at that height. The horizontal pressure gradients are balanced by the
Coriolis force, producing (for f > 0) the horizontal winds shown (⊗ into the paper,
and � out of the paper). Only the wind shear is given by the thermal wind.
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Fig. 2.7 A parcel is adiabatically displaced upward from level z to z + δz. If the
resulting density difference, δρ, between the parcel and its new surroundings is
positive the displacement is stable, and conversely. If ρ̃ is the environmental values,
and ρθ is potential density, we see that δρ = ρ̃θ(z)− ρ̃θ(z + δz).
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Fig. 2.8 Scaled frequency,ω/N, plotted as a function of scaled horizontal wavenum-
ber, k/m, using the full dispersion relation of (2.248) (solid line, asymptoting to unit
value for large k/m) and with the hydrostatic dispersion relation (2.252) (dashed
line, tending to ∞ for large k/m).
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Fig. 2.9 Dispersion diagram for acoustic gravity waves in an isothermal atmosphere,
calculated using (2.261). The frequency is given in units of the the buoyancy fre-
quency N, and the wavenumbers are non-dimensionalized by the inverse of the scale
height, H. The solid curves indicate acoustic waves, whose frequency is always
higher than that of the corresponding Lamb wave at the same wavenumber (i.e., ck),
and of the base acoustic frequency ≈ 1.12N. The dashed curves indicate internal
gravity waves, whose frequency asymptotes to N at small horizontal scales.
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Fig. 2.10 An idealized boundary layer. The values of a field, such as velocity, U ,
may vary rapidly in a boundary in order to satisfy the boundary conditions at a rigid
surface. The parameter δ is a measure of the boundary layer thickness, and H is a
typical scale of variation away from the boundary.
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Fig. 2.11 The idealized Ekman layer solution in the lower atmosphere, plotted as a
hodograph of the wind components: the arrows show the velocity vectors at a par-
ticular heights, and the curve traces out the continuous variation of the velocity. The
values on the curve are of the non-dimensional variable z/d, where d = (2A/f)1/2,
and vg is chosen to be zero.
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Fig. 2.12 Solutions for a bottom Ekman layer with a given flow in the fluid interior
(left), and for a top Ekman layer with a given surface stress (right), both with d = 1.
On the left we have ug = 1, vg = 0. On the right we have ug = vg = 0, τ̃y = 0 and√

2τ̃x/(fd) = 1.
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Fig. 2.13 A bottom Ekman layer, generated from an eastward geostrophic flow above
it. An overbar denotes a vertical integral over the Ekman layer, so that −f × uE is
the Coriolis force on the vertically integrated Ekman velocity. ME is the frictionally
induced boundary layer transport, and τ is the stress.
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Fig. 2.14 An idealized Ekman spiral in a southern hemisphere ocean, driven by an
imposed wind stress. A northern hemisphere spiral would be the reflection of this
about the vertical axis. Such a clean spiral is rarely observed in the real ocean. The
net transport is at right angles to the wind, independent of the detailed form of
the friction. The angle of the surface flow is 45° to the wind only for a Newtonian
viscosity.
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Fig. 2.15 Upper and lower Ekman layers. The upper Ekman layer in the ocean is
primarily driven by an imposed wind stress, whereas the lower Ekman layer in the
atmosphere or ocean largely results from the interaction of interior geostrophic ve-
locity and a rigid lower surface. The upper part of figure shows the vertical Ekman
‘pumping’ velocities that result from the given wind stress, and the lower part of the
figure shows the Ekman pumping velocities given the interior geostrophic flow.
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Fig. 3.1 A shallow water system. h is the thickness of a water column, H its mean
thickness, η the height of the free surface and ηb is the height of the lower, rigid,
surface, above some arbitrary origin, typically chosen such that the average of ηb is
zero. ∆η is the deviation free surface height, so we have η = ηb + h = H +∆η.
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Fig. 3.2 The mass budget for a column of area A in a shallow water system. The fluid
leaving the column is

∮
ρhu ·ndl where n is the unit vector normal to the boundary

of the fluid column. There is a non-zero vertical velocity at the top of the column if
the mass convergence into the column is non-zero.
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Fig. 3.3 The reduced gravity shallow water system. An active layer lies over a deep,
more dense, quiescent layer. In a common variation the upper surface is held flat by
a rigid lid, and η0 = 0.
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Fig. 3.4 The multi-layer shallow water system. The layers are numbered from the top
down. The coordinates of the interfaces are denoted by η, and the layer thicknesses
by h, so that hi = ηi − ηi−1.
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Fig. 3.5 The two-layer shallow water system. A fluid of density ρ1 lies over a denser
fluid of density ρ2. In the reduced gravity case the lower layer may be arbitrarily
thick and is assumed stationary and so has no horizontal pressure gradient. In the
‘rigid-lid’ approximation the top surface displacement is neglected, but there is then
a non-zero pressure gradient induced by the lid.
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Fig. 3.6 Geostrophic flow in a shallow water system, with a positive value of the
Coriolis parameter f , as in the Northern Hemisphere. The pressure force is directed
down the gradient of the height field, and this can be balanced by the Coriolis force
if the fluid velocity is at right angles to it. If f were negative, the geostrophic flow
would be reversed.
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Fig. 3.7 Margules’ relation: using hydrostasy, the difference in the horizontal pres-
sure gradient between the upper and the lower layer is given by −g′ρ1s, where
s = tanφ = ∆z/∆y is the interface slope and g′ = (ρ2 − ρ1)/ρ1. Geostrophic bal-
ance then gives f∂y(u1 −u2) = g′s, which is a special case of (3.60).
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Fig. 3.8 Dispersion relation for Poincaré waves (solid) and non-rotating shallow water
waves (dashed). Frequency is scaled by the Coriolis frequency f , and wavenumber
by the inverse deformation radius

√
gH/f . For small wavenumbers the frequency is

approximately f ; for high wavenumbers it asymptotes to that of non-rotating waves.
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Fig. 3.9 The time development of an initial ‘top hat’ height disturbance, with zero
initial velocity, in non-rotating flow. Fronts propagate in both directions, and the ve-
locity is non-zero between fronts, but ultimately the velocity and height disturbance
are radiated away to infinity.
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Fig. 3.10 Solutions of a linear geostrophic adjustment problem. Top panel: the initial
height field, given by (3.121) with η0 = 1. Second panel: equilibrium (final) height
field, η given by (3.134) and η = f0ψ/g. Third panel: equilibrium geostrophic
velocity (normal to the gradient of height field), given by (3.135). Bottom panel:
potential vorticity, given by (3.130), and this does note evolve. The distance, x
is non-dimensionalized by the deformation radius Ld =

√
gH/f0, and the velocity

by η0(g/f0Ld). Changes to the initial state occur only within O(Ld) of the initial
discontinuity; and as x → ±∞ the initial state is unaltered.
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Fig. 3.11 If a stably stratified initial state with sloping isentropes (left) is adiabati-
cally rearranged then the state of minimum potential energy has flat isentropes, as
on the right, but the amount of fluid contained between each isentropic surface is
unchanged. The difference between the potential energies of the two states is the
available potential energy.
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Fig. 3.12 An isopycnal surface, b = b, and the constant height surface, z = z. z
is the height of the isopycnal surface after a rearrangement to a minimum potential
energy state, equal to the average height of the isopycnal surface. The values of z
on the isopycnal surface, and of b on the constant height surface, can be obtained
by the Taylor expansions shown. For an ideal gas in pressure coordinates, replace z
by p and b by θ.
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Fig. 4.1 Evaluation of circulation in the axi-symmetric vr vortex. The circulation
around the path A–B–C–D is zero. This result does not depend on the radii r1 or r2

or the angle φ, and the circulation around any infinitesimal path not enclosing the
origin is zero. Thus the vorticity is zero everywhere except at the origin.
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Fig. 4.2 A vortex tube passing through a material sheet. The circulation is the integral
of the velocity around the boundary of A, and is equal to the integral of the normal
component of vorticity over A.
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Fig. 4.3 Evolution of an infinitesimal material line δl from time t to time t + δt. It
can be seen from the diagram that Dδl/Dt = δv.

From Vallis (2006)

From Vallis (2006)



i
i

i
i

i
i

i
i

w

Fig. 4.4 The tilting of vorticity. Suppose that the vorticity, ω is initially directed
horizontally, as in the lower figure, so that ωz, its vertical component, is zero. The
material lines, and therefore also the vortex lines, are tilted by the postive vertical
velocity W , thus creating a vertically oriented vorticity. This mechanism is important
in creating vertical vorticity in the atmospheric boundary layer (and, one may show,
the β-effect in large-scale flow).
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Fig. 4.5 Stretching of material lines distorts the cylinder of fluid as shown. Vorticity
is tied to material lines, and so is amplified in the direction of the stretching. How-
ever, because the volume of fluid is conserved, the end surfaces shrink, the material
lines through the cylinder ends converge and the integral of vorticity over a material
surface (the circulation) remains constant, as discussed in section 4.3.2.
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Fig. 4.6 Solenoids and the circulation theorem. Solenoids are tubes perpendicular to
both ∇α and ∇p, and they have a non-zero cross-sectional area if isolines of α and
p do not coincide. The rate of change of circulation over a material surface is given
by the sum of all the solenoidal areas crossing the surface. If ∇α×∇p = 0 there are
no solenoids.
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Fig. 4.7 The projection of a material circuit on to the equatorial plane. If a fluid
element moves poleward, keeping its orientation to the local vertical fixed (e.g., it
stays horizontal) then the area of its projection on to the equatorial plane increases.
If its total (absolute) circulation is to be maintained, then the vertical component
of the relative vorticity must diminish; that is,

∫
A(ω + 2Ω) · dA =

∫
A(ζ + f)dA =

constant. Thus, the β term in D(ζ + f)/Dt = Dζ/Dt+βv = 0 ultimately arises from
the tilting of a parcel relative to the axis of rotation as it moves meridionally.
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Fig. 4.8 An infinitesimal fluid element, bounded by two isosurfaces of the conserved
tracer χ. As Dχ/Dt = 0, then Dδχ/Dt = 0.
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θ = θ0 − δθ

mass = ρδAδh = constant
entropy ∝ δθ = δh|∇θ| = constant

Fig. 4.9 Geometry of potential vorticity conservation. The circulation equation is
D[(ωa · n)δA]/Dt = S · nδA, where S ∝ ∇θ × ∇T . We choose n = ∇θ/|∇θ|,
where θ is materially conserved, to annihilate the solenoidal term on the right-hand
side, and we note that δA = δV/δh, where δV is the volume of the cylinder, and
the height of the column is δh = δθ/|∇θ|. The circulation is C ≡ ωa · nδA =
ωa · (∇θ/|∇θ|)(δV/δh) = [ρ−1ωa · ∇θ](δM/δθ), where δM = ρ δV is the mass
of the cylinder. As δM and δθ are materially conserved, so is the potential vorticity
ρ−1ωa · ∇θ.
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Fig. 4.10 The mass of a column of fluid, hA, is conserved in the shallow water sys-
tem. Furthermore, the vorticity is tied to material lines so that ζA is also a material
invariant, where ζ =ω · k is the vertical component of the vorticity. From this, ζ/h
must be materially conserved; that is, D(ζ/h)/Dt = 0, which is the conservation of
potential vorticity in a shallow water system. In a rotating system this generalizes to
D[(ζ + f)/h]/Dt = 0.
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Fig. 4.11 (a) Two isentropic surfaces that do not intersect the ground. The integral of
PV concentration over the volume between them, V , is zero, even if there is heating
and the contours move. (b) An isentropic surface, A, intersects the ground, B, thus
enclosing a volume V . The rate of change of PV concentration over the volume is
given by an integral over B.

From Vallis (2006)

From Vallis (2006)



i
i

i
i

i
i

i
i

Fig. 5.1 A quasi-geostrophic fluid system consisting of two immiscible fluids of dif-
ferent density. The quantities η′ are the interface displacemens from the resting
basic state, denoted with dashed lines, with ηb being the bottom topography.
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Fig. 5.2 A multi-layer quasi-geostrophic fluid system. Layers are numbered from the
top down, i denotes a general interior layer and N denotes the bottom layer.
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Fig. 5.3 The two-level quasi-geostrophic system with a flat bottom and rigid lid at
which w = 0.
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Fig. 5.4 The mechanism of a two-dimensional (x-y) Rossby wave. An initial distur-
bance displaces a material line at constant latitude (the straight horizontal line) to
the solid line marked η(t = 0). Conservation of potential vorticity, βy + ζ, leads to
the production of relative vorticity, as shown for two parcels. The associated veloc-
ity field (arrows on the circles) then advects the fluid parcels, and the material line
evolves into the dashed line. The phase of the wave has propagated westwards.
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Fig. 5.5 Left: the dispersion relation for barotropic (ωt, solid line) and baroclinic
(ωc , dashed line) Rossby waves in the two-layer model, calculated using (5.192)
and (5.193) with ky = 0, plotted for both positive and negative zonal wavenumbers
and frequencies. The wavenumber is non-dimensionalised by kd, and the frequency
is non-dimensionalized by β/kd. Right: the corresponding zonal group and phase
velocities, cg = ∂ω/∂kx and cp =ω/kx, with superscript ‘t’ or ‘c’ for the barotropic
or baroclinic mode, respectively. The velocities are non-dimensionalized by β/k2

d.
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Fig. 5.6 The propagation of a two-dimensional wave. (a) Two lines of constant phase
(e.g., two wavecrests) at a time t1. The wave is propagating in the direction k with
wavelength λ. (b) The same line of constant phase at two successive times. The
phase speed is the speed of advancement of the wavecrest in the direction of travel,
and so cp = l/(t2 − t1). The phase speed in the x-direction is the speed of propaga-
tion of the wavecrest along the x-axis, and cxp = lx/(t2 − t1) = cp/ cosφ.
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Fig. 5.7 Superposition of two sinusoidal waves with wavenumbers k and k + δk,
producing a wave (solid line) that is modulated by a slowly varying wave envelope or
wave packet (dashed line). The envelope moves at the group velocity, cg = ∂ω/∂k
and the phase of the wave moves at the group speed cp =ω/k.
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